skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NMR-guided refinement of crystal structures using 15 N chemical shift tensors
An NMR-guided procedure for refining crystal structures has recently been introduced and shown to produce unusually high resolution structures.  more » « less
Award ID(s):
2100582
PAR ID:
10520341
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
CrystEngComm
Volume:
26
Issue:
25
ISSN:
1466-8033
Page Range / eLocation ID:
3289 to 3302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, we describe the easy synthesis of mercury complexes with the 1,5,9‐trimesityldipyrromethene (MesDPM) ligand. The compounds were characterized using standard analytic methods such as NMR, IR, as well as UV/Vis spectroscopy. The molecular structures in solid state were determined by single‐crystal X‐ray diffraction analysis (SC‐XRD) experiments. In addition, the199Hg NMR chemical shifts were determined by measurements and quantum chemical calculations. 
    more » « less
  2. The gas-phase structures of zinc and cadmium complexes of lysine (Lys) are investigated via a combination of infrared multiple photon dissociation action spectroscopy and ab initio quantum chemical calculations. In order to unambiguously identify the experimentally observed species, [Zn(Lys−H)]+and CdCl+(Lys), the action spectra were compared to linear absorption spectra calculated at the B3LYP level of theory, using 6-311+G(d,p) and def2-TVZP basis sets for the zinc and cadmium systems, respectively. Single point energies were also calculated at the B3LYP, B3P86, MP2, and B3LYP-GD3BJ (accounting for empirical dispersion) levels of theory using larger basis sets. Identification of the experimentally formed isomers is possible through good agreement between infrared multiple photon dissociation action spectra and the theoretically predicted spectra. The [Zn(Lys−H)]+complex adopts a tridentate orientation involving the amino acid backbone amine and deprotonated carboxylic acid groups as well as the side-chain amine group, [Nα,CO,Nɛ]. The CdCl+(Lys) complex similarly adopts a tridentate chelation involving the amino acid backbone amine and carbonyl groups, as well as the side-chain amine group, [Nα,CO,Nɛ]. In both cases, the identified complexes are the lowest energy gas-phase structures at all levels of theory. 
    more » « less
  3. Abstract Multiplex imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real‐time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIIImetallacrowns bearing RuIIpolypyridyl complexes,LnRu‐3(Ln=YIII, YbIII, NdIII, ErIII). Relaxed structures ofYRu‐3in the ground and the excited electronic states have been calculated using dispersion‐corrected density functional theory methods. Detailed photophysical studies ofLnRu‐3have demonstrated that characteristic emission signals of YbIII, NdIIIand ErIIIin the NIR‐II range can be sensitized upon excitation in the visible range through RuII‐centered metal‐to‐ligand charge transfer (MLCT) states. We have also showed that these NIR‐II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue‐mimicking phantoms. This work opens unprecedented perspectives for NIR‐II multiplex imaging using LnIII‐based molecular compounds. 
    more » « less
  4. The fact that every compact oriented 4-manifold admits spinc structures was proved long ago by Hirzebruch and Hopf. However, the usual proof is neither direct nor transparent. This article gives a new proof using twistor spaces that is simpler and more geometric. After using these ideas to clarify various aspects of four-dimensional geometry, we then explain how related ideas can be used to understand both spin and spinc structures in any dimension. 
    more » « less
  5. A proficient site for humid CO2adsorption in zeolites: K+-D8R structures can selectively adsorb CO2over H2O. 
    more » « less