Abstract On 4 and 6 July 2019, two large strike‐slip earthquakes withW‐phase moment magnitudesMWW6.5 (foreshock) andMWW7.1 (mainshock) struck the Eastern California Shear Zone, northeast of Ridgecrest. The faulting geometry and kinematic coseismic slip distribution of both events are determined by jointly inverting seismological and geodetic observations guided by aftershock and surface rupture locations. The foreshock ruptured two orthogonal faults with a prominent L‐shaped geometry with maximum slip of ~1.1 m on the NE‐SW segment. The mainshock faulting extended NW‐SE along several primary fault segments that straddle the foreshock slip. The surface rupture and slip model indicate mostly near‐horizontal strike‐slip motion with maximum slip of ~3.7 m, but there is a localized vertical dip‐slip motion. Both the foreshock and mainshock ruptures terminate in regions of complex surface offsets. High aftershock productivity and low rupture velocity may be the result of rupture of a relatively immature fault system.
more »
« less
Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye
Abstract Two major earthquakes (MW7.8 and MW7.7) ruptured left-lateral strike-slip faults of the East Anatolian Fault Zone (EAFZ) on February 6, 2023, causing >59,000 fatalities and ~$119B in damage in southeastern Türkiye and northwestern Syria. Here we derived kinematic rupture models for the two events by inverting extensive seismic and geodetic observations using complex 5-6 segment fault models constrained by satellite observations and relocated aftershocks. The larger event nucleated on a splay fault, and then propagated bilaterally ~350 km along the main EAFZ strand. The rupture speed varied from 2.5-4.5 km/s, and peak slip was ~8.1 m. 9-h later, the second event ruptured ~160 km along the curved northern EAFZ strand, with early bilateral supershear rupture velocity (>4 km/s) followed by a slower rupture speed (~3 km/s). Coulomb Failure stress increase imparted by the first event indicates plausible triggering of the doublet aftershock, along with loading of neighboring faults.
more »
« less
- Award ID(s):
- 1802364
- PAR ID:
- 10520410
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The eastern portion of the Shumagin gap along the Alaska Peninsula ruptured in anMW7.8 thrust earthquake on 22 July 2020. The megathrust fault space‐time slip history is determined by joint inversion of regional and teleseismic waveform data along with co‐seismic static Global Navigation Satellite System (GNSS) displacements. The rupture expanded westward and along‐dip from the hypocenter, located adjacent to the 1938MW8.2 Alaska earthquake, with slip and aftershocks extending into the gap about 180 to 205 km, respectively, at depths from 15 to 40 km. The deeper half of ~75% of the Shumagin gap experienced faulting. However, the patchy slip is significantly less than possible accumulated slip since the region's last major rupture in 1917, compatible with geodetic seismic‐coupling estimates of 10‐40% beneath the Shumagin Islands. The rupture terminated in the western region of very low seismic coupling. There was a regional decade‐scale decrease in b‐value prior to the 2020 event.more » « less
-
Abstract The 1938MS8.3 and 2021MW8.2 earthquakes both ruptured within the Semidi segment of the Aleutian‐Alaska subduction zone. The large‐slip distribution of the 2021 event is well constrained within the depth range 25–45 km, with seaward tsunami observations excluding significant shallower coseismic slip. The 1938 event slip distribution is more uncertain. Regional and far‐field tide gauge observations for the 1938 event are modeled to constrain the location of large coseismic slip. The largest slip (2.0 m) is located below the continental shelf on a 180‐km‐long portion of the rupture extending further northeast than the 2021 rupture, to near Sitkinak Island. Minor slip (1.0 m) extends seaward under the continental slope to 8 km deep, where large slip may have occurred in 1788. The megathrust shallower than 25 km depth to the southwest experienced many small aftershocks and aseismic slip following the 2021 event, and has limited slip deficit.more » « less
-
The destructive 2023 moment magnitude ( M w ) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’ complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip episodes during the initial M w 7.8 earthquake with delayed rupture initiation to the southwest. The M w 7.7 event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment.more » « less
-
Abstract We develop finite element models of the coseismic displacement field accounting for the 3D elastic structures surrounding the epicentral area of the 2019 Ridgecrest earthquake sequence containing two major events of Mw7.1 and Mw6.4. The coseismic slip distribution is inferred from the surface displacement field recorded by interferometric synthetic aperture radar. The rupture dip geometry is further optimized using a novel nonlinear‐crossover‐linear inversion approach. It is found that accounting for elastic heterogeneity and fault along‐strike curvilinearity improves the fit to the observed displacement field and yields a more accurate estimate of geodetic moment and Coulomb stress changes. We observe spatial correlations among the locations of aftershocks and patches of high slip, and rock anomalous elastic properties, suggesting that the shallow crust's elastic structures possibly controlled the Ridgecrest earthquake sequence. Most of the coseismic slip with a peak slip of 7.4 m at 3.6 km depth occurred above a zone of reducedS‐wave velocity and significant post‐Mw7.1 afterslip. This implies that viscous materials or fluid presence might have contributed to the low rupture velocity of the mainshock. Moreover, the zone of high slip on the northwest‐trending fault segment is laterally bounded by two aftershock clusters, whose location is characterized by intermediate rock rigidity. Notably, some minor orthogonal faults consistently end above a subsurface rigid body. Overall, these observations of structural controls improve our understandings of the seismogenesis within incipient fault systems.more » « less
An official website of the United States government

