This content will become publicly available on November 1, 2024
- Award ID(s):
- 1953806
- NSF-PAR ID:
- 10520430
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials Today
- Volume:
- 70
- Issue:
- C
- ISSN:
- 1369-7021
- Page Range / eLocation ID:
- 17 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing.more » « less
-
Annihilation of vacancy clusters in monolayer molybdenum diselenide (MoSe2) under electron beam irradiation is reported. In situ high-resolution transmission electron microscopy observation reveals that the annihilation is achieved by diffusion of vacancies to the free edge near the vacancy clusters. Monte Carlo simulations confirm that it is energetically favorable for the vacancies to locate at the free edge. By computing the minimum energy path for the annihilation of one vacancy cluster as a case study, it is further shown that electron beam irradiation and pre-stress in the suspended MoSe2 monolayer are necessary for the vacancies to overcome the energy barriers for diffusion. The findings suggest a new mechanism of vacancy healing in 2D materials and broaden the capability of electron beam for defect engineering of 2D materials, a promising way of tuning their properties for engineering applications.more » « less
-
Abstract Annihilation of vacancy clusters in monolayer molybdenum diselenide (MoSe2) under electron beam irradiation is reported. In situ high‐resolution transmission electron microscopy observation reveals that the annihilation is achieved by diffusion of vacancies to the free edge near the vacancy clusters. Monte Carlo simulations confirm that it is energetically favorable for the vacancies to locate at the free edge. By computing the minimum energy path for the annihilation of one vacancy cluster as a case study, it is further shown that electron beam irradiation and pre‐stress in the suspended MoSe2monolayer are necessary for the vacancies to overcome the energy barriers for diffusion. The findings suggest a new mechanism of vacancy healing in 2D materials and broaden the capability of electron beam for defect engineering of 2D materials, a promising way of tuning their properties for engineering applications.
-
Abstract Like in any other semiconductor, point defects in transition-metal dichalcogenides (TMDs) are expected to strongly impact their electronic and optical properties. However, identifying defects in these layered two-dimensional materials has been quite challenging with controversial conclusions despite the extensive literature in the past decade. Using first-principles calculations, we revisit the role of chalcogen vacancies and hydrogen impurity in bulk TMDs, reporting formation energies and thermodynamic and optical transition levels. We show that the S vacancy can explain recently observed cathodoluminescence spectra of MoS2flakes and predict similar optical levels in the other TMDs. In the case of the H impurity, we find it more stable sitting on an interstitial site in the Mo plane, acting as a shallow donor, and possibly explaining the often observed n-type conductivity in some TMDs. We also predict the frequencies of the local vibration modes for the H impurity, aiding its identification through Raman or infrared spectroscopy.
-
Abstract The layered architecture of stiff biological materials often endows them with surprisingly high fracture toughness in spite of their brittle ceramic constituents. Understanding the link between organic–inorganic layered architectures and toughness could help to identify new ways to improve the toughness of biomimetic engineering composites. We study the cylindrically layered architecture found in the spicules of the marine sponge
Euplectella aspergillum . We cut micrometer-size notches in the spicules and measure their initiation toughness and average crack growth resistance using flexural tests. We find that while the spicule’s architecture provides toughness enhancements, these enhancements are relatively small compared to prototypically tough biological materials, like nacre. We investigate these modest toughness enhancements using computational fracture mechanics simulations.