skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Locality of the windowed local density of states
We introduce a generalization of local density of states which is “windowed” with respect to position and energy, called the windowed local density of states (wLDOS). This definition generalizes the usual LDOS in the sense that the usual LDOS is recovered in the limit where the position window captures individual sites and the energy window is a delta distribution. We prove that the wLDOS is local in the sense that it can be computed up to arbitrarily small error using spatial truncations of the system Hamiltonian. Using this result we prove that the wLDOS is well-defined and computable for infinite systems satisfying some natural assumptions. We finally present numerical computations of the wLDOS at the edge and in the bulk of a “Fibonacci SSH model”, a one-dimensional non-periodic model with topological edge states.  more » « less
Award ID(s):
1700102 2012286 2406981
PAR ID:
10520448
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Numerische Mathematik
Volume:
156
Issue:
2
ISSN:
0029-599X
Page Range / eLocation ID:
741 to 775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract FeSe1−xSxremains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe1−xSxwithx > 0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe0.81S0.19, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We analyze modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately and identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the zone corners. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. We explore several aspects related to the stripes, such as the role of S and Fe-vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates. 
    more » « less
  2. In this paper, we define a window code to be the portion of a Spatially-coupled low-density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder. We consider the design of SC-LDPC codes for windowed decoding via optimization of the window code. In particular, because iterative decoding is optimal on codes with cycle-free graph representations, we ask fundamental questions about the construction and parameters of cycle-free window codes. We show that it is possible to have an SC-LDPC code with cycles and with cycle-free window codes. We consider the relationship between the distance of the window code and the distance of the SC-LDPC code. Further, we show that SC-LDPC codes with MDS window codes exist, and all such codes are asymptotically bad. This work gives insight into the tradeoffs between window code parameters and performance of the SC-LDPC code. 
    more » « less
  3. Abstract Polar vortices in oxide superlattices exhibit complex polarization topologies. Using a combination of electron energy loss near-edge structure analysis, crystal field multiplet theory, and first-principles calculations, we probe the electronic structure within such polar vortices in [(PbTiO 3 ) 16 /(SrTiO 3 ) 16 ] superlattices at the atomic scale. The peaks in Ti $$L$$ L -edge spectra shift systematically depending on the position of the Ti 4+ cations within the vortices i.e., the direction and magnitude of the local dipole. First-principles computation of the local projected density of states on the Ti $$3d$$ 3 d orbitals, together with the simulated crystal field multiplet spectra derived from first principles are in good agreement with the experiments. 
    more » « less
  4. We address in this work the problem of minimizing quantum entropies under local constraints. We suppose that macroscopic quantities, such as the particle density, current, and kinetic energy, are fixed at each point of Rd and look for a density operator over L2(Rd), minimizing an entropy functional. Such minimizers are referred to as local Gibbs states. This setting is in contrast with the classical problem of prescribing global constraints, where the total number of particles, total current, and total energy in the system are fixed. The question arises, for instance, in the derivation of fluid models from quantum dynamics. We prove, under fairly general conditions, that the entropy admits a unique constrained minimizer. Due to a lack of compactness, the main difficulty in the proof is to show that limits of minimizing sequences satisfy the local energy constraint. We tackle this issue by introducing a simpler auxiliary minimization problem and by using a monotonicity argument involving the entropy. 
    more » « less
  5. We investigate the possibility of a many-body mobility edge in the generalized Aubry-André (GAA) model with interactions using the Shift-Invert Matrix Product States (SIMPS) algorithm [Phys. Rev. Lett. 118, 017201 (2017)]. The noninteracting GAA model is a one-dimensional quasiperiodic model with a self-duality-induced mobility edge. To search for a many-body mobility edge in the interacting case, we exploit the advantages of SIMPS that it targets many-body states in an energy-resolved fashion and does not require all many-body states to be localized for some to converge. Our analysis indicates that the targeted states in the presence of the single-particle mobility edge match neither “MBL-like” (where MBL denotes many-body localization) fully converged localized states nor the fully delocalized case in which SIMPS fails to converge. We benchmark the algorithm's output both for parameters that give fully converged, “MBL-like” localized states and for delocalized parameters where SIMPS fails to converge. In the intermediate cases, where the parameters produce a single-particle mobility edge, we find many-body states that develop entropy oscillations as a function of cut position at larger bond dimensions. These oscillations at larger bond dimensions, which are also found in the fully localized benchmark but not the fully delocalized benchmark, occur both at the band edge and center and may indicate convergence to a nonthermal state (either localized or critical). 
    more » « less