skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lax dynamics for Cartan decomposition with applications to Hamiltonian simulation
Simulating the time evolution of a Hamiltonian system on a classical computer is hard—The computational power required to even describe a quantum system scales exponentially with the number of its constituents, let alone integrate its equations of motion. Hamiltonian simulation on a quantum machine is a possible solution to this challenge—Assuming that a quantum system composing of spin-½ particles can be manipulated at will, then it is tenable to engineer the interaction between those particles according to the one that is to be simulated, and thus predict the value of physical quantities by simply performing the appropriate measurements on the system. Establishing a linkage between the unitary operators described mathematically as a logic solution and the unitary operators recognizable as quantum circuits for execution, is therefore essential for algorithm design and circuit implementation. Most current techniques are fallible because of truncation errors or the stagnation at local solutions. This work offers an innovative avenue by tackling the Cartan decomposition with the notion of Lax dynamics. Within the integration errors that is controllable, this approach gives rise to a genuine unitary synthesis that not only is numerically feasible, but also can be utilized to gauge the quality of results produced by other means, and extend the knowledge to a wide range of applications. This paper aims at establishing the theoretic and algorithmic foundations by exploiting the geometric properties of Hamiltonian subalgebras and describing a common mechanism for deriving the Lax dynamics.  more » « less
Award ID(s):
1912816
PAR ID:
10520478
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
Volume:
44
Issue:
3
ISSN:
0272-4979
Page Range / eLocation ID:
1406 to 1434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum algorithms usually are described via quantum circuits representable as unitary operators. Synthesizing the unitary operators described mathematically in terms of the unitary operators recognizable as quantum circuits is essential. One such a challenge lies in the Hamiltonian simulation problem, where the matrix exponential of a large-scale skew-Hermitian matrix is to be computed. Most current techniques are prone to approximation errors, whereas the parametrization of the underlying Hamiltonian via the Cartan decomposition is more promising. To prepare for such a simulation, this work proposes to tackle the Cartan decomposition by means of the Lax dynamics. The advantages include not only that it is numerically feasible with no matrices involved, but also that this approach offers a genuine unitary synthesis within the integration errors. This work contributes to the theoretic and algorithmic foundations in three aspects: exploiting the quaternary representation of Hamiltonian subalgebras; describing a common mechanism for deriving the Lax dynamics; and providing a mathematical theory of convergence. 
    more » « less
  2. In quantum many-body systems, complex dynamics delocalize the physical degrees of freedom. This spreading of information throughout the system has been extensively studied in relation to quantum thermalization, scrambling, and chaos. Locality is typically defined with respect to a tensor product structure (TPS) which identifies the local subsystems of the quantum system. In this paper, we investigate a simple geometric measure of operator spreading by quantifying the distance of the space of local operators from itself evolved under a unitary channel. We show that this TPS distance is related to the scrambling properties of the dynamics between the local subsystems and coincides with the entangling power of the dynamics in the case of a symmetric bipartition. Additionally, we provide sufficient conditions for the maximization of the TPS distance and show that the class of 2-unitaries provides examples of dynamics that achieve this maximal value. For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems. Beyond this short-time regime, the behavior of the TPS distance is explored through numerical simulations of prototypical models exhibiting distinct ergodic properties, ranging from quantum chaos and integrability to Hilbert space fragmentation and localization. 
    more » « less
  3. null (Ed.)
    The accuracy of quantum dynamics simulation is usually measured by the error of the unitary evolution operator in the operator norm, which in turn depends on certain norm of the Hamiltonian. For unbounded operators, after suitable discretization, the norm of the Hamiltonian can be very large, which significantly increases the simulation cost. However, the operator norm measures the worst-case error of the quantum simulation, while practical simulation concerns the error with respect to a given initial vector at hand. We demonstrate that under suitable assumptions of the Hamiltonian and the initial vector, if the error is measured in terms of the vector norm, the computational cost may not increase at all as the norm of the Hamiltonian increases using Trotter type methods. In this sense, our result outperforms all previous error bounds in the quantum simulation literature. Our result extends that of [Jahnke, Lubich, BIT Numer. Math. 2000] to the time-dependent setting. We also clarify the existence and the importance of commutator scalings of Trotter and generalized Trotter methods for time-dependent Hamiltonian simulations. 
    more » « less
  4. In this paper we describe an algebraic/geometrical approach to quantum scrambling. Generalized quantum subsystems are described by an hermitian-closed unital subalgebra A of operators evolving through a unitary channel. Qualitatively, quantum scrambling is defined by how the associated physical degrees of freedom get mixed up with others by the dynamics. Quantitatively, this is accomplished by introducing a measure, the geometric algebra anti-correlator (GAAC), of the self-orthogonalization of the commutant of A induced by the dynamics. This approach extends and unifies averaged bipartite OTOC, operator entanglement, coherence generating power and Loschmidt echo. Each of these concepts is indeed recovered by a special choice of A . We compute typical values of GAAC for random unitaries, we prove upper bounds and characterize their saturation. For generic energy spectrum we find explicit expressions for the infinite-time average of the GAAC which encode the relation between A and the full system of Hamiltonian eigenstates. Finally, a notion of A -chaoticity is suggested. 
    more » « less
  5. Abstract Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models. 
    more » « less