The Steptoean Positive Carbon Isotope Excursion (SPICE) event at ca. 497−494 Ma was a major carbon-cycle perturbation of the late Cambrian that coincided with rapid diversity changes among trilobites. Several scenarios (e.g., climatic/oceanic cooling and seawater anoxia) have been proposed to account for an extinction of trilobites at the onset of SPICE, but the exact mechanism remains unclear. Here, we present a chemostratigraphic study of carbonate carbon and carbonate-associated sulfate sulfur isotopes (δ13Ccarb and δ34SCAS) and elemental redox proxies (UEF, MoEF, and Corg/P), augmented by secular trilobite diversity data, from both upper slope (Wangcun) and lower slope (Duibian) successions from the Jiangnan Slope, South China, spanning the Drumian to lower Jiangshanian. Redox data indicate locally/regionally well-oxygenated conditions throughout the SPICE event in both study sections except for low-oxygen (hypoxic) conditions within the rising limb of the SPICE (early-middle Paibian) at Duibian. As in coeval sections globally, the reported δ13Ccarb and δ34SCAS profiles exhibit first-order coupling throughout the SPICE event, reflecting co-burial of organic matter and pyrite controlled by globally integrated marine productivity, organic preservation rates, and shelf hypoxia. Increasing δ34SCAS in the “Early SPICE” interval (late Guzhangian) suggests that significant environmental change (e.g., global-oceanic hypoxia) was under way before the global carbon cycle was markedly affected. Assessment of trilobite range data within a high-resolution biostratigraphic framework for the middle-late Cambrian facilitated re-evaluation of the relationship of the SPICE to contemporaneous biodiversity changes. Trilobite diversity in South China declined during the Early SPICE (corresponding to the End-Marjuman Biomere Extinction, or EMBE, of Laurentia) and at the termination of the SPICE (corresponding to the End-Steptoean Biomere Extinction, or ESBE, of Laurentia), consistent with biotic patterns from other cratons. We infer that oxygen minimum zone and/or shelf hypoxia expanded as a result of locally enhanced productivity due to intensified upwelling following climatic cooling, and that expanded hypoxia played a major role in the EMBE at the onset of SPICE. During the SPICE event, global-ocean ventilation promoted marine biotic recovery, but termination of SPICE-related cooling in the late Paibian may have reduced global-ocean circulation, triggering further redox changes that precipitated the ESBE. Major changes in both marine environmental conditions and trilobite diversity during the late Guzhangian demonstrate that the SPICE event began earlier than the Guzhangian-Paibian boundary, as previously proposed.
more »
« less
Tectonic trigger to the first major extinction of the Phanerozoic: The early Cambrian Sinsk event
The Cambrian explosion, one of the most consequential biological revolutions in Earth history, occurred in two phases separated by the Sinsk event, the first major extinction of the Phanerozoic. Trilobite fossil data show that Series 2 strata in the Ross Orogen, Antarctica, and Delamerian Orogen, Australia, record nearly identical and synchronous tectono-sedimentary shifts marking the Sinsk event. These resulted from an abrupt pulse of contractional supracrustal deformation on both continents during thePararaia janeaetrilobite Zone. The Sinsk event extinction was triggered by initial Ross/Delamerian supracrustal contraction along the edge of Gondwana, which caused a cascading series of geodynamic, paleoenvironmental, and biotic changes, including (i) loss of shallow marine carbonate habitats along the Gondwanan margin; (ii) tectonic transformation to extensional tectonics within the Gondwanan interior; (iii) extrusion of the Kalkarindji large igneous province; (iv) release of large volumes of volcanic gasses; and (v) rapid climatic change, including incursions of marine anoxic waters and collapse of shallow marine ecosystems.
more »
« less
- Award ID(s):
- 1849968
- PAR ID:
- 10520526
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 13
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Ordovician (Hirnantian; 445 Ma) hosts the second most severe mass extinction in Earth history, coinciding with Gondwanan glaciation and increased geochemical evidence for marine anoxia. It remains unclear whether cooling, expanded oxygen deficiency, or a combination drove the Late Ordovician Mass Extinction (LOME). Here, we present combined iodine and sulfur isotope geochemical data from three globally distributed carbonate successions to constrain changes in local and global marine redox conditions. Iodine records suggest locally anoxic conditions were potentially pervasive on shallow carbonate shelves, while sulfur isotopes suggest a reduction in global euxinic (anoxic and sulfidic) conditions. Late Katian sulfate‐sulfur isotope data show a large negative excursion that initiated during elevated sea level and continued through peak Hirnantian glaciation. Geochemical box modeling suggests a combination of decreasing pyrite burial and increasing weathering are required to drive the observed negative excursion suggesting a ∼3% decrease of global seafloor euxinia during the Late Ordovician. The sulfur datasets provide further evidence that this trend was followed by increases in euxinia which coincided with eustatic sea‐level rise during subsequent deglaciation in the late Hirnantian. A persistence of shelf anoxia against a backdrop of waning then waxing global euxinia was linked to the two LOME pulses. These results place important constraints on local and global marine redox conditions throughout the Late Ordovician and suggest that non‐sulfidic shelfal anoxia—along with glacioeustatic sea level and climatic cooling—were important environmental stressors that worsened conditions for marine fauna, resulting in the second‐largest mass extinction in Earth history and the only example during an icehouse climate.more » « less
-
The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes.more » « less
-
Abstract Granitic batholiths of the ∼500 Ma Ross Orogen in Antarctica are voluminous in scale, reflecting prolific magmatism along the active early Paleozoic convergent margin of Gondwana. New age and isotopic analysis of zircons from a large suite of Ross granitoids spanning >2,000 km along the orogen provide a wealth of geochronologic, tracer, and inheritance information, enabling us to investigate the pace of magmatism, along‐strike temporal and geochemical trends, magmatic sources, and tectonic modes of convergence. Because granitoids penetrate the crust of the earlier Neoproterozoic rift margin, they also provide insight into the age and composition of the largely ice‐covered East Antarctic craton. Zircon U‐Pb ages from these and other samples indicate that active Ross magmatism spanned 475–590 Ma, much longer than generally regarded. Most samples have heavy zircon δ18O values between 6.5 and 11.5‰ and initial εHfcompositions between 0 and −15; their isotopic co‐variations are independent of age, as in other contemporary continental arcs, and reflect largely crustal melt sources. Samples near Shackleton Glacier have distinctly more mantle‐like isotope composition (i.e., radiogenic εHfand low δ18O) and separate two regions with distinctive isotopic properties and inheritance patterns—a more juvenile section of Mesoproterozoic crust underlying the southern TAM and an older, more evolved region of Paleoproterozoic and Archean crust in the central TAM. The isotopic discontinuity separating these regions indicates the presence of a cryptic crustal boundary of Grenvillian or younger age within the East Antarctic shield that may be traceable into the western Laurentian part of the Rodinia supercontinent.more » « less
-
Abstract The impact of asteroids and comets with planetary surfaces is one of the most catastrophic, yet ubiquitous, geological processes in the solar system. The Chicxulub impact event, which has been linked to the Cretaceous-Paleogene (K-Pg) mass extinction marking the beginning of the Cenozoic Era, is arguably the most significant singular geological event in the past 100 million years of Earth’s history. The Chicxulub impact occurred in a marine setting. How quickly the seawater re-entered the newly formed basin after the impact, and its effects of it on the cratering process, remain debated. Here, we show that the explosive interaction of seawater with impact melt led to molten fuel–coolant interaction (MFCI), analogous to what occurs during phreatomagmatic volcanic eruptions. This process fractured and dispersed the melt, which was subsequently deposited subaqueously to form a series of well-sorted deposits. These deposits bear little resemblance to the products of impacts in a continental setting and are not accounted for in current classification schemes for impactites. The similarities between these Chicxulub deposits and the Onaping Formation at the Sudbury impact structure, Canada, are striking, and suggest that MFCI and the production of volcaniclastic-like deposits is to be expected for large impacts in shallow marine settings.more » « less
An official website of the United States government

