Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
more »
« less
This content will become publicly available on December 1, 2025
Suppressing dipolar relaxation in thin layers of dysprosium atoms
Abstract The dipolar interaction can be attractive or repulsive, depending on the position and orientation of the dipoles. Constraining atoms to a plane with their magnetic moment aligned perpendicularly leads to a largely side-by-side repulsion and generates a dipolar barrier which prevents atoms from approaching each other. We show experimentally and theoretically how this can suppress dipolar relaxation, the dominant loss process in spin mixtures of highly magnetic atoms. Using dysprosium, we observe an order of magnitude reduction in the relaxation rate constant, and another factor of ten is within reach based on the models which we have validated with our experimental study. The loss suppression opens up many new possibilities for quantum simulations with spin mixtures of highly magnetic atoms.
more »
« less
- PAR ID:
- 10520553
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study spin dynamics and quantum magnetism with ultracold highly-magnetic atoms. In particular, we focus on the interactions among rare-earth atoms localized in a site of an optical-lattice potential, modeled as a cylindrically symmetric harmonic oscillator in the presence of a weak external magnetic field. The interactions between the atoms are modeled using a multi-channel Hamiltonian containing multiple spin–spin and anisotropic spin–orbit interactions with strengths that depend on the separation between the atoms. We studied the eigenenergies of the atom pair in a site for different lattice geometries and magnetic field strengths. In parallel, we compared these energies to those found from a simplified approach, where the complex-collisional physics is replaced by a two-length-scale pseudopotential containing the contact and magnetic dipole–dipole interactions. The eigenenergies of this model can be computed analytically within the Born approximation as well as non-perturbatively for strong contact interactions. We have shown that the pseudopotential model can accurately represent the multi-channel Hamiltonian in certain parameter regimes of the shape of the site of an optical lattice. The pseudopotential forms the starting point for many-body, condensed matter simulations involving many atom pairs in different sites of an optical lattice.more » « less
-
Abstract The emergence of hybrid metal halides (HMH) materials, such as the archetypal CH3NH3PbBr3, provides an appealing material platform for solution-processed spintronic applications due to properties such as unprecedented large Rashba spin-splitting states and highly efficient spin-to-charge (StC) conversion efficiencies. Here we report the first study of StC conversion and spin relaxation time in MAPbBr3single crystals at room temperature using a spin pumping approach. Microwave frequency and power dependence of StC responses are both consistent with the spin pumping model, from which an inverse Rashba–Edelstein effect coherence length of up to ∼30 picometer is obtained, highlighting a good StC conversion efficiency. The magnetic field angular dependence of StC is investigated and can be well-explained by the spin precession model under oblique magnetic field. A long spin relaxation time of up to ∼190 picoseconds is obtained, which can be attributed to the surface Rashba state formed at the MAPbBr3interface. Our oblique Hanle effect by FMR-driven spin pumping technique provides a reliable and sensitive tool for measuring the spin relaxation time in various solution processed HMH single crystals.more » « less
-
We report results of magnetization and 19F NMR measurements in the normal state of as-grown vacuum-annealed LaO0.5F0.5BiS2. The magnetization is dominated by a temperature-independent diamagnetic component and a field- and temperature-dependent paramagnetic contribution 𝑀𝜇(𝐻,𝑇) from a ∼1000 ppm concentration of local moments, an order of magnitude higher than can be accounted for by measured rare-earth impurity concentrations. 𝑀𝜇(𝐻,𝑇) can be fit by the Brillouin function 𝐵𝐽(𝑥) or, perhaps more realistically, a two-level tanh(𝑥) model for magnetic Bi 6𝑝 ions in defect crystal fields. Both fits require a phenomenological Curie-Weiss argument 𝑥=𝜇eff𝐻/(𝑇+𝑇𝑊), 𝑇𝑊≈1.7 K. There is no evidence for magnetic order down to 2 K, and the origin of 𝑇𝑊 is not clear. 19F frequency shifts, linewidths, and spin-lattice relaxation rates are consistent with purely dipolar 19F/defect-spin interactions. The defect-spin correlation time 𝜏𝑐(𝑇) obtained from 19F spin-lattice relaxation rates obeys the Korringa relation 𝜏𝑐𝑇=const, indicating the relaxation is dominated by conduction-band fluctuations.more » « less
-
Understanding how magnetic nuclei affect spin relaxation is vital for designing robust spin coherence in magnetic materials and molecules. A key question is the extent that magnetic nuclei close to a spin (e.g., in the ligand shell of a metal complex) influence relaxation and how it varies over different classes of nuclei. Herein, we apply high-field EPR, X-band EPR, and ac magnetic susceptibility techniques to a family of five V(IV) complexes of the type [V(C6X4O2)3]2–, featuring five different sets of 12 nuclear spins on the ligand shell: X = 1H (1), 2H (2), 19F (3), 35/37Cl (4), and 79/81Br (5). We found several unanticipated results in these studies. For example, at high-field/-frequency, we found that compound 1, with the highest-magnetic-moment ligand nuclear spins, exhibits the longest phase memory relaxation times of the series. Furthermore, at lower fields, we found that the spin–lattice relaxation time and its field dependence were ligand-dependent, despite no obvious change in electronic structure across the five species. Based on this data, structural comparisons, and Raman spectroscopic data, we tentatively conclude that the spin–lattice relaxation properties of 1–5 stem from fine-tuning of the local magnetic environment with changing identity of the X atoms.more » « less
An official website of the United States government
