skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing dynamics of a two-dimensional dipolar spin ensemble using single qubit sensor
Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.  more » « less
Award ID(s):
2014094
PAR ID:
10344922
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dipolar spin ensembles with random spin positions attract much attention currently because they help to understand decoherence as it occurs in solid state quantum bits in contact with spin baths. Also, these ensembles are systems which may show many-body localization, at least in the sense of very slow spin dynamics. We present measurements of the autocorrelations of spins on diamond surfaces in a doubly-rotating frame which eliminates local disorder. Strikingly, the time scales in the longitudinal and the transversal channel differ by more than one order of magnitude which is a factor much greater than one would have expected from simulations of spins on lattices. A previously developed dynamic mean-field theory for spins (spinDMFT) fails to explain this phenomenon. Thus, we improve it by extending it to clusters (CspinDMFT). This theory does capture the striking mismatch up to two orders of magnitude for random ensembles. Without positional disorder, however, the mismatch is only moderate with a factor below 4. The pivotal role of positional disorder suggests that the strong mismatch is linked to precursors of many-body localization. 
    more » « less
  2. Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13 C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13 C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength, which we attribute to effective carbon-carbon interactions mediated by the electronic spin ensemble. In particular, observations across the full range of hyperfine couplings indicate the nuclear spin diffusion constant takes values up to two orders of magnitude greater than that expected from homo-nuclear spin couplings. 
    more » « less
  3. Dense spin ensembles in solids present a natural platform for studying quantum many-body dynamics. Multiple-pulse coherent control can be used to manipulate the magnetic dipolar interaction between the spins to engineer their dynamics. Here, we investigate the performance of a series of well-known pulse sequences that aim to suppress interspin dipolar couplings. We use a combination of numerical simulations and solid-state nuclear magnetic resonance experiments on adamantane to evaluate and compare sequence performance. We study the role of sequence parameters like interpulse delays and resonance offsets. Disagreements between experiments and theory are typically explained by the presence of control errors and experimental nonidealities. The simulations allow us to explore the influence of factors such as finite pulse widths, rotation errors, and phase transient errors. We also investigate the role of local disorder and establish that it is, perhaps unsurprisingly, a distinguishing factor in the decoupling efficiency of spectroscopic sequences (that preserve Hamiltonian terms proportional to S z ) and time-suspension sequences (which refocus all terms in the internal Hamiltonian). We discuss our findings in the context of previously known analytical results from average Hamiltonian theory. Finally, we explore the ability of time-suspension sequences to protect multispin correlations in the system. Published by the American Physical Society2025 
    more » « less
  4. Abstract Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as generalized discrete truncated Wigner approximation (GDTWA). It is based on a discrete semi-classical phase space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitraryS ≥ 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it forS > 1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also can correctly reproduce long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for models which feature quantum-thermalization at long times. We apply our method to study dynamics in largeS > 1/2 spin-models and compute experimentally accessible observables such as Zeeman level populations, contrast of spin coherence, spin squeezing, and entanglement quantified by single-spin Renyi entropies. We reveal that largeSsystems can feature larger entanglement than correspondingS = 1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail. 
    more » « less
  5. Abstract The dipolar interaction can be attractive or repulsive, depending on the position and orientation of the dipoles. Constraining atoms to a plane with their magnetic moment aligned perpendicularly leads to a largely side-by-side repulsion and generates a dipolar barrier which prevents atoms from approaching each other. We show experimentally and theoretically how this can suppress dipolar relaxation, the dominant loss process in spin mixtures of highly magnetic atoms. Using dysprosium, we observe an order of magnitude reduction in the relaxation rate constant, and another factor of ten is within reach based on the models which we have validated with our experimental study. The loss suppression opens up many new possibilities for quantum simulations with spin mixtures of highly magnetic atoms. 
    more » « less