This content will become publicly available on May 14, 2025
- Award ID(s):
- 2245910
- PAR ID:
- 10520587
- Publisher / Repository:
- IEEE
- Date Published:
- Format(s):
- Medium: X
- Location:
- Arlington, VA
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper introduces ASCENT (context Aware Spectrum Coexistence Design and Implementation) toolset, an advanced context-aware terrestrial satellite spectrum sharing toolset designed for researchers, policymakers, and regulators. It serves two essential purposes (a) evaluating the potential for harmful interference to primary users in satellite bands and (b) facilitating the analysis, design, and implementation of diverse regulatory policies on spectrum usage and sharing. Notably, ASCENT implements a closed-loop feedback system that allows dynamic adaptation of policies according to a wide range of contextual factors (e.g., weather, buildings, summer/winter foliage, etc.) and feedback on the impact of these policies through realistic simulation. Specifically, ASCENT comprises the following components (i) interference evaluation tool for evaluating interference at the incumbents in a spectrum-sharing environment while taking the underlying contexts, (ii) dynamic spectrum access (DSA) framework for providing context-aware instructions to adapt networking parameters and control secondary terrestrial network's access to the shared spectrum band according to context aware prioritization, (iii) Context broker to acquire essential and relevant contexts from external context information providers; and (iv) DSA Database to store dynamic and static contexts and the regulator's policy information. The closed-loop feedback system of ASCENT is implemented by integrating these components in a modular software architecture. A case study of sharing the lower 12 GHz Ku band (12.2-12.7 GHz) with the 5G terrestrial cellular network is considered, and the usability of ASCENT is demonstrated by dynamically changing exclusion zone's radius in different weather conditions.more » « less
-
Spectrum sharing between terrestrial 5G and incumbent networks in the satellite bands presents a promising avenue to satisfy the ever-increasing bandwidth demand of the next-generation wireless networks. However, protecting incumbent operations from harmful interference poses a fundamental challenge in accommodating terrestrial broadband cellular networks in the satellite bands. State-of-the-art spectrum-sharing policies usually consider several worst-case assumptions and ignore site-specific contextual factors in making spectrum-sharing decisions, and thus, often results in under-utilization of the shared band for the secondary licensees. To address such limitations, this paper introduces CAT3S (Context-Aware Terrestrial-Satellite Spectrum Sharing) framework that empowers the coexisting terrestrial 5G network to maximize utilization of the shared satellite band without creating harmful interference to the incumbent links by exploiting the contextual factors. CAT3S consists of the following two components: (i) context-acquisition unit to collect and process essential contextual information for spectrum sharing and (ii) context-aware base station (BS) control unit to optimize the set of operational BSs and their operation parameters (i.e., transmit power and active beams per sector). To evaluate the performance of the CAT3S, a realistic spectrum coexistence case study over the 12 GHz band is considered. Experiment results demonstrate that the proposed CAT3S achieves notably higher spectrum utilization than state-of-the-art spectrum-sharing policies in different weather contexts.more » « less
-
Telecommunication industries and spectrum regulation authorities are increasingly interested in unlocking the 12 GHz band for two-way 5G terrestrial services. The 12 GHz band has a much larger bandwidth than the current sub-6 GHz band and better propagation characteristics than the millimeter wave (mmWave) band. Thus, the 12 GHz band offers great potential for improving the coverage and capacity of terrestrial 5G networks. However, interference issues between incumbent receivers and 5G radio links present a major challenge in the 12 GHz band. If one could exploit the dynamic contexts inherent to the 12 GHz band, one could reform spectrum sharing policy to create spectrum access opportunities for 5G mobile services. This article makes three contributions. First, it presents the characteristics and challenges of the 12 GHz band. Second, we explain the characteristics and requirements for spectrum sharing at a variety of levels to resolve those issues. Lastly, we present several research opportunities to enable harmonious coexistence of incumbent licensees and 5G networks within the 12 GHz band.more » « less
-
Abstract Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.
-
Next generation wireless services and applications, including Augmented Reality, Internet-of-Things, and Smart- Cities, will increasingly rely on Dynamic Spectrum Access (DSA) methods that can manage spectrum resources rapidly and efficiently. Advances in regulatory policies, standardization, networking, and wireless technology are enabling DSA methods on a more granular basis in terms of time, frequency, and geographical location which are key for the operation of 5G and beyond-5G networks. In this context, this paper proposes a novel DSA algorithm that leverages IEEE 1900.5.2 Spectrum Consumption Models (SCMs) which offer a mechanism for RF devices to: (i) “announce” or “declare” their intention to use the spectrum and their needs in terms of interference protection; and (ii) determine compatibility (i.e., non-interference) with existing devices. In this paper, we develop an SCM-based DSA algorithm for spectrum deconfliction in large-scale wireless network environments and evaluate this algorithm in terms of computation time, efficiency of spectrum allocation, and number of device reconfigurations due to interference using a custom simulation platform. The results demonstrate the benefits of using SCMs and their capabilities to perform fine grained spectrum assignments in dynamic and dense communication environments.more » « less