skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks
Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.  more » « less
Award ID(s):
2246796
PAR ID:
10520640
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Briefings in Bioinformatics
Volume:
25
Issue:
4
ISSN:
1467-5463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spatial transcriptomics is a powerful and widely used approach for profiling the gene expression landscape across a tissue with emerging applications in molecular medicine and tumor diagnostics. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind RNA. Ideally, unique molecular identifiers (UMIs) at a spot measure spot-specific expression, but this is often not the case in practice due to bleed from nearby spots, an artifact we refer to as spot swapping. To improve the power and precision of downstream analyses in spatial transcriptomics experiments, we propose SpotClean, a probabilistic model that adjusts for spot swapping to provide more accurate estimates of gene-specific UMI counts. SpotClean provides substantial improvements in marker gene analyses and in clustering, especially when tissue regions are not easily separated. As demonstrated in multiple studies of cancer, SpotClean improves tumor versus normal tissue delineation and improves tumor burden estimation thus increasing the potential for clinical and diagnostic applications of spatial transcriptomics technologies. 
    more » « less
  2. Single-cell RNA sequencing (scRNA-seq) provides expression profiles of individual cells but fails to preserve crucial spatial information. On the other hand, Spatial Transcrip- tomics technologies are able to analyze specific regions within tissue sections, but lack of the capability to examine in single-cell resolution. To overcome these issues, we present Single-cell and Spatial transcriptomics Alignment (SSA), a novel technique that employs an optimal transport algorithm to assign individual cells from a scRNA-seq atlas to their spa- tial locations in actual tissue based on their expression profiles. SSA has demonstrated su- perior performance compared to existing methods SpaOTsc, Tangram, Seurat and DistMap using 10 semi-simulated datasets generated from a high-resolution spatial transcriptomics human breast cancer dataset with 100,064 cells. This advancement provides a refined tool for researchers to delve deeper in understanding of the relationship between cellular spatial organization and gene expression. 
    more » « less
  3. Abstract Spatially-resolved RNA profiling has now been widely used to understand cells’ structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data. Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed spatial transcriptomes provide a more complete gene expression landscape for downstream analyses of cell/spot clustering for tissue segmentation, and spatial gene expression clustering and visualizations. 
    more » « less
  4. Abstract Motivation Detecting cancer gene expression and transcriptome changes with mRNA-sequencing (RNA-Seq) or array-based data are important for understanding the molecular mechanisms underlying carcinogenesis and cellular events during cancer progression. In previous studies, the differentially expressed genes were detected across patients in one cancer type. These studies ignored the role of mRNA expression changes in driving tumorigenic mechanisms that are either universal or specific in different tumor types. To address the problem, we introduce two network-based multi-task learning frameworks, NetML and NetSML, to discover common differentially expressed genes shared across different cancer types as well as differentially expressed genes specific to each cancer type. The proposed frameworks consider the common latent gene co-expression modules and gene-sample biclusters underlying the multiple cancer datasets to learn the knowledge crossing different tumor types. Results Large-scale experiments on simulations and real cancer high-throughput datasets validate that the proposed network-based multi-task learning frameworks perform better sample classification compared with the models without the knowledge sharing across different cancer types. The common and cancer specific molecular signatures detected by multi-task learning frameworks on TCGA ovarian cancer, breast cancer, and prostate cancer datasets are correlated with the known marker genes and enriched in cancer relevant KEGG pathways and Gene Ontology terms. Availability and Implementation Source code is available at: https://github.com/compbiolabucf/NetML Supplementary information Supplementary data are available at Bioinformatics 
    more » « less
  5. Abstract Spatially resolved gene expression profiling provides insight into tissue organization and cell–cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC. 
    more » « less