skip to main content


This content will become publicly available on October 1, 2024

Title: S-matrix path integral approach to symmetries and soft theorems
A<sc>bstract</sc>

We explore a formulation of the S-matrix in terms of the path integral with specified asymptotic data, as originally proposed by Arefeva, Faddeev, and Slavnov. In the tree approximation the S-matrix is equal to the exponential of the classical action evaluated on-shell. This formulation is well-suited to questions involving asymptotic symmetries, as it avoids reference to non-gauge/diffeomorphism invariant bulk correlators or sources at intermediate stages. We show that the soft photon theorem, originally derived by Weinberg and more recently connected to asymptotic symmetries by Strominger and collaborators, follows rather simply from invariance of the action under large gauge transformations applied to the asymptotic data. We also show that this formalism allows for efficient computation of the S-matrix in curved spacetime, including particle production due to a time dependent metric.

 
more » « less
Award ID(s):
2209700
NSF-PAR ID:
10520704
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We study the holographic correlators corresponding to scattering of fluctuations of an open string worldsheet with AdS2geometry. In the out-of-time-order configuration, the correlators display a Lyapunov growth that saturates the chaos bound. We show that in a double-scaling limit interpolating between the Lyapunov regime and the late time exponential decay, the out-of-time-order correlator (OTOC) can be obtained exactly, and it has the same functional form found in the analogous calculation in JT gravity. The result can be understood as coming from high energy scattering near the horizon of a AdS2black hole, and is essentially controlled by the flat space worldsheet S-matrix. While previous works on the AdS2string employed mainly a static gauge approach, here we focus on conformal gauge and clarify the role of boundary reparametrizations in the calculation of the correlators. We find that the reparametrization mode is governed by a non-local action which is distinct from the Schwarzian action arising in JT gravity, and in particular leads to SL(2,) invariant boundary correlators. The OTOC in the double-scaling limit, however, has the same functional form as that obtained from the Schwarzian, and it can be computed using the reparametrization action and resumming a subset of diagrams that are expected to dominate in the limit. One application of our results is to the defect CFT defined by the half-BPS Wilson loop in$$ \mathcal{N} $$N= 4 SYM. In this context, we show that the exact result for the OTOC in the double-scaling limit is in precise agreement with a recent analytic bootstrap prediction to three-loop order at strong coupling.

     
    more » « less
  2. Abstract

    The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed.

     
    more » « less
  3. We analyze lattice Hamiltonian systems whose global symmetries have ’t Hooft anomalies. As is common in the study of anomalies, they are probed by coupling the system to classical background gauge fields. For flat fields (vanishing field strength), the nonzero spatial components of the gauge fields can be thought of as twisted boundary conditions, or equivalently, as topological defects. The symmetries of the twisted Hilbert space and their representations capture the anomalies. We demonstrate this approach with a number of examples. In some of them, the anomalous symmetries are internal symmetries of the lattice system, but they do not act on-site. (We clarify the notion of “on-site action.”) In other cases, the anomalous symmetries involve lattice translations. Using this approach we frame many known and new results in a unified fashion. In this work, we limit ourselves to 1+1d systems with a spatial lattice. In particular, we present a lattice system that flows to the c=1 compact boson system with any radius (no BKT transition) with the full internal symmetry of the continuum theory, with its anomalies and its T-duality. As another application, we analyze various spin chain models and phrase their Lieb-Shultz-Mattis theorem as an ’t Hooft anomaly matching condition. We also show in what sense filling constraints like Luttinger theorem can and cannot be viewed as reflecting an anomaly. As a by-product, our understanding allows us to use information from the continuum theory to derive some exact results in lattice model of interest, such as the lattice momenta of the low-energy states. 
    more » « less
  4. Abstract

    We study projection-free methods for constrained Riemannian optimization. In particular, we propose a Riemannian Frank-Wolfe (RFW) method that handles constraints directly, in contrast to prior methods that rely on (potentially costly) projections. We analyze non-asymptotic convergence rates ofRFWto an optimum for geodesically convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under whichRFWcan attain a linear convergence rate. As a concrete example, we specializeRFWto the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian “linear” oracle required byRFWadmits a closed form solution; this result may be of independent interest. We complement our theoretical results with an empirical comparison ofRFWagainst state-of-the-art Riemannian optimization methods, and observe thatRFWperforms competitively on the task of computing Riemannian centroids.

     
    more » « less
  5. null (Ed.)
    A bstract In many gauge theories, the existence of particles in every representation of the gauge group (also known as completeness of the spectrum) is equivalent to the absence of one-form global symmetries. However, this relation does not hold, for example, in the gauge theory of non-abelian finite groups. We refine this statement by considering topological operators that are not necessarily associated with any global symmetry. For discrete gauge theory in three spacetime dimensions, we show that completeness of the spectrum is equivalent to the absence of certain Gukov-Witten topological operators. We further extend our analysis to four and higher spacetime dimensions. Since topological operators are natural generalizations of global symmetries, we discuss evidence for their absence in a consistent theory of quantum gravity. 
    more » « less