We consider the uplift of co-dimension two defect solutions of seven dimensional gauged supergravity to eleven dimensions, previously found by two of the authors. The uplifted solutions are expressed as Lin-Lunin-Maldacena solutions and an infinite family of regular solutions describing holographic defects is found using the electrostatic formulation of LLM solutions.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract -
A bstract We explore a formulation of the S-matrix in terms of the path integral with specified asymptotic data, as originally proposed by Arefeva, Faddeev, and Slavnov. In the tree approximation the S-matrix is equal to the exponential of the classical action evaluated on-shell. This formulation is well-suited to questions involving asymptotic symmetries, as it avoids reference to non-gauge/diffeomorphism invariant bulk correlators or sources at intermediate stages. We show that the soft photon theorem, originally derived by Weinberg and more recently connected to asymptotic symmetries by Strominger and collaborators, follows rather simply from invariance of the action under large gauge transformations applied to the asymptotic data. We also show that this formalism allows for efficient computation of the S-matrix in curved spacetime, including particle production due to a time dependent metric.
-
A bstract The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certain
trilinear relations that we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2, ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ -functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers. -
A bstract We undertake a general study of the boundary (or edge) modes that arise in gauge and gravitational theories defined on a space with boundary, either asymptotic or at finite distance, focusing on efficient techniques for computing the corresponding boundary action. Such actions capture all the dynamics of the system that are implied by its asymptotic symmetry group, such as correlation functions of the corresponding conserved currents. Working in the covariant phase space formalism, we develop a collection of approaches for isolating the boundary modes and their dynamics, and illustrate with various examples, notably AdS 3 gravity (with and without a gravitational Chern-Simons terms) subject to assorted boundary conditions.more » « less
-
A bstract We consider the Seiberg-Witten solution of pure $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions, with gauge group SU( N ). A simple exact series expansion for the dependence of the 2( N − 1) Seiberg-Witten periods a I ( u ) , a DI ( u ) on the N − 1 Coulomb-branch moduli u n is obtained around the ℤ 2 N -symmetric point of the Coulomb branch, where all u n vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kähler potential K = $$ \frac{1}{2}{\sum}_I $$ 1 2 ∑ I Im( $$ \overline{a} $$ a ¯ I a DI ), which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the ℤ 2 N -symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kähler potential.more » « less
-
A bstract Pure gravity in AdS 3 is a theory of boundary excitations, most simply expressed as a constrained free scalar with an improved stress tensor that is needed to match the Brown-Henneaux central charge. Excising a finite part of AdS gives rise to a static gauge Nambu-Goto action for the boundary graviton. We show that this is the $$ T\overline{T} $$ T T ¯ deformation of the infinite volume theory, as the effect of the improvement term on the deformed action can be absorbed into a field redefinition. The classical gravitational stress tensor is reproduced order by order by the $$ T\overline{T} $$ T T ¯ trace equation. We calculate the finite volume energy spectrum in static gauge and find that the trace equation imposes sufficient constraints on the ordering ambiguities to guarantee agreement with the light-cone gauge prediction. The correlation functions, however, are not completely fixed by the trace equation. We show how both the gravitational action and the $$ T\overline{T} $$ T T ¯ deformation allow for finite improvement terms, and we match these to the undetermined total derivative terms in Zamolodchikov’s point splitting definition of the $$ T\overline{T} $$ T T ¯ operator.more » « less
-
A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated.more » « less