skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EXTREME LEARNING MACHINES FOR VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS
Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to complex models.A well-known Achilles' heel of this approach is its computational cost, which often renders it unfeasible in practice. An appealing alternative is to instead analyze the sensitivity of a surrogate model with the goal of lowering computational costs while maintaining sufficient accuracy. Should a surrogate be simple enough to be amenable to the analytical calculations of its Sobol' indices, the cost of GSA is essentially reduced to the construction of the surrogate.We propose a new class of sparse-weight extreme learning machines (ELMs), which, when considered as surrogates in the context of GSA, admit analytical formulas for their Sobol' indices and, unlike the standard ELMs, yield accurate approximations of these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the field and on a chemical reaction network.  more » « less
Award ID(s):
1745654 1953271
PAR ID:
10520935
Author(s) / Creator(s):
; ;
Publisher / Repository:
Begel House Inc.
Date Published:
Journal Name:
International Journal for Uncertainty Quantification
Volume:
14
Issue:
4
ISSN:
2152-5080
Page Range / eLocation ID:
83 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paszynski, M.; Kranzlmüller, D.; Krzhizhanovskaya, V.V.; Dongarra, J.J.; Sloot, P.M. (Ed.)
    Global sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based model in this work. This introduces the additional challenge of finding the minimum number of training data samples required to train the NNs accurately. In this work, a new method is introduced to accurately quantify the GSA values by iterating over both the number of samples required to train the NNs, terminated using an outer-loop sensitivity convergence criteria, and the number of model responses required to calculate the GSA, terminated with an inner-loop sensitivity convergence criteria. The iterative surrogate-based GSA guarantees converged values for the Sobol’ indices and, at the same time, alleviates the specification of arbitrary accuracy metrics for the surrogate model. The proposed method is demonstrated in two cases, namely, an eight-variable borehole function and a three-variable nondestructive testing (NDT) case. For the borehole function, both the first- and total-order Sobol’ indices required 200 and 105 data points to terminate on the outer- and inner-loop sensitivity convergence criteria, respectively. For the NDT case, these values were 100 for both first- and total-order indices for the outer-loop sensitivity convergence, and 106 and 103 for the inner-loop sensitivity convergence, respectively, for the first- and total-order indices, on the inner-loop sensitivity convergence. The differences of the proposed method with GSA on the true functions are less than 3% in the analytical case and less than 10% in the physics-based case (where the large error comes from small Sobol’ indices). 
    more » « less
  2. Global sensitivity analysis (GSA) of distribution system with respect to stochastic PV variations plays an important role in designing optimal voltage control schemes. This paper proposes a Kriging, i.e., Gaussian process modeling enabled data-driven GSA method. The key idea is to develop a surrogate model that captures the hidden global relationship between voltage and real and reactive power injections from the historical data. With the surrogate model, the Sobol index can be conveniently calculated to assess the global sensitivity of voltage to various power injection variations. Comparison results with other model-based GSA methods on the IEEE 37-bus feeder, such as the polynomial chaos expansion and the Monte Carlo approaches demonstrate that the proposed method can achieve accurate GSA outcomes while maintaining high computational efficiency. 
    more » « less
  3. The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates. 
    more » « less
  4. null (Ed.)
    Global sensitivity analysis aims at quantifying and ranking the relative contribution of all the uncertain inputs of a mathematical model that impact the uncertainty in the output of that model, for any input-output mapping. Motivated by the limitations of the well-established Sobol' indices which are variance-based, there has been an interest in the development of non-moment-based global sensitivity metrics. This paper presents two complementary classes of metrics (one of which is a generalization of an already existing metric in the literature) which are based on the statistical distances between probability distributions rather than statistical moments. To alleviate the large computational cost associated with Monte Carlo sampling of the input-output model to estimate probability distributions, polynomial chaos surrogate models are proposed to be used. The surrogate models in conjunction with sparse quadrature-based rules, such as conjugate unscented transforms, permit efficient calculation of the proposed global sensitivity measures. Three benchmark sensitivity analysis examples are used to illustrate the proposed approach. 
    more » « less
  5. The complexity and size of state-of-the-art cell models have significantly increased in part due to the requirement that these models possess complex cellular functions which are thought—but not necessarily proven—to be important. Modern cell mod- els often involve hundreds of parameters; the values of these parameters come, more often than not, from animal experiments whose relationship to the human physiology is weak with very little information on the errors in these measurements. The concomi- tant uncertainties in parameter values result in uncertainties in the model outputs or quantities of interest (QoIs). Global sensitivity analysis (GSA) aims at apportioning to individual parameters (or sets of parameters) their relative contribution to output uncer- tainty thereby introducing a measure of influence or importance of said parameters. New GSA approaches are required to deal with increased model size and complexity; a three-stage methodology consisting of screening (dimension reduction), surrogate modeling, and computing Sobol’ indices, is presented. The methodology is used to analyze a physiologically validated numerical model of neurovascular coupling which possess 160 uncertain parameters. The sensitivity analysis investigates three quantities of interest, the average value of K+ in the extracellular space, the average volumetric flow rate through the perfusing vessel, and the minimum value of the actin/myosin complex in the smooth muscle cell. GSA provides a measure of the influence of each parameter, for each of the three QoIs, giving insight into areas of possible physiological dysfunction and areas of further investigation. 
    more » « less