skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An optimized purification protocol for enzymatically synthesized S-adenosyl-L-methionine (SAM) for applications in solution state infrared spectroscopic studies
S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM’s infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM’s structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm−1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.  more » « less
Award ID(s):
2107902
PAR ID:
10521018
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Volume:
309
Issue:
C
ISSN:
1386-1425
Page Range / eLocation ID:
123816
Subject(s) / Keyword(s):
S-adenosyl-L-methionine, L-methionine, ATP, trans-methylation, L-methionine-adenosyl-transferase, conformational dynamics, solution state infrared spectroscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The gas-phase conformations of the protonated forms of thymidine-5′-monophosphate and uridine-5′-monophosphate, [pdThd+H] + and [pUrd+H] + , are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure calculations. The IRMPD action spectra of [pdThd+H] + and [pUrd+H] + are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Low-energy conformations of [pdThd+H] + and [pUrd+H] + and their relative stabilities are computed at the MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers indicate that the dominant conformers of [pdThd+H] + and [pUrd+H] + populated in the experiments are protonated at the phosphate oxo oxygen atom, with a syn nucleobase orientation that is stabilized by strong POH + ⋯O2 and P–OH⋯O4′ hydrogen-bonding interactions, and C2′- endo sugar puckering. Minor abundance of conformers protonated at the O2 carbonyl of the nucleobase residue may also contribute for [pdThd+H] + , but do not appear to be important for [pUrd+H] + . Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of thymidine and uridine, [dThd+H] + and [Urd+H] + , and the deprotonated forms of pdThd and pUrd, [pdThd−H] − and [pUrd−H] − , provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Most interestingly, the thymine and uracil nucleobases remain in their canonical forms for [pdThd+H] + and [pUrd+H] + , unlike [dThd+H] + and [Urd+H] + , where protonation occurs on the nucleobases and induces tautomerization of the thymine and uracil residues. 
    more » « less
  2. Complexes of 18-crown-6 ether (18C6) with four protonated amino acids (AAs) are examined using infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by the infrared free electron laser at the Centre Laser Infrarouge d’Orsay (CLIO). The AAs examined in this work include glycine (Gly) and the three basic AAs: histidine (His), lysine (Lys), and arginine (Arg). To identify the (AA)H + (18C6) conformations present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory. Relative energies of various conformers and isomers are provided by single point energy calculations carried out at the B3LYP, B3P86, M06, and MP2(full) levels using the 6-311+G(2p,2d) basis set. The comparisons between the IRMPD and theoretical IR spectra indicate that 18C6 binds to Gly and His via the protonated backbone amino group, whereas protonated Lys prefers binding via the protonated side-chain amino group. Results for Arg are less definitive with strong evidence for binding to the protonated guanidino side chain (the calculated ground conformer at most levels of theory), but contributions from backbone binding to a zwitterionic structure are likely. 
    more » « less
  3. A method for directly calculating the temperature derivative of two-dimensional infrared (2D-IR) spectra from simulations at a single temperature is presented. The approach is demonstrated by application to the OD stretching spectrum of isotopically dilute aqueous (HOD in H 2 O) solutions of urea as a function of concentration. Urea is an important osmolyte because of its ability to denature proteins, which has motivated significant interest in its effect on the structure and dynamics of water. The present results show that the temperature dependence of both the linear IR and 2D-IR spectra, which report on the underlying energetic driving forces, is more sensitive to urea concentration than the spectra themselves. Additional physical insight is provided by calculation of the contributions to the temperature derivative from different interactions, e.g., water–water, water–urea, and urea–urea, present in the system. Finally, it is demonstrated how 2D-IR spectra at other temperatures can be obtained from only room temperature simulations. 
    more » « less
  4. The gas-phase structures of protonated unsymmetrical 1,1-dimethylhydrazine (UDMH) and the proton-bound dimers of UDMH and hydrazine are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser and an optical parametric oscillator laser system. To identify the structures present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at the B3LYP-GD3BJ/6-311+G(d,p) level of theory. These comparisons show that protonated UDMH binds the proton at the methylated nitrogen atom (α) with two low-lying α conformers probably being populated. For (UDMH) 2 H + , the proton is shared between the methylated nitrogen atoms with several low-lying α conformers likely to be populated. Higher-lying conformers of (UDMH) 2 H + in which the proton is shared between α and β (unmethylated) nitrogen atoms cannot be ruled out on the basis of the IRPMD spectrum. For (N 2 H 4 ) 2 H + , there are four low-lying conformers that all reproduce the IRMPD spectrum reasonably well. As hydrazine and UDMH see usage as fuels for rocket engines, such spectra are potentially useful as a means of remotely monitoring rocket launches, especially in cases of unsuccessful launches where environmental hazards need to be assessed. 
    more » « less
  5. Surface-enhanced infrared absorption (SEIRA) based on top-down fabricated nanostructures such as nanoantennas and metasurfaces has attracted much attention in recent years. These plasmonic resonant nanostructures can enhance the IR absorption signal of nearby molecules through its nearfield enhancement and have been shown to be able to detect adsorbed monolayers of proteins and lipids through their IR absorption spectra. Here, we demonstrate the continuous monitoring of cellular responses to stimuli using metasurface-enhanced infrared spectroscopy (MEIRS). A431 cells are seeded on a gold plasmonic metasurface fabricated on CaF2 substrate. Continuous monitoring is made possible by integrating the metasurface with a flow chamber, and the IR absorption spectra of the attached cells are measured in reflectance mode under continuous perfusion of cell culture medium. Scanning electron microscopy (SEM) revealed that the cells preferentially adhere to gold surfaces rather than CaF2 surfaces, suggesting that the IR signal measured through MEIRS is highly sensitive to the cells’ attachment and interaction with the gold metasurface. We have monitored the effect of methyl-beta-cyclodextrin, a cholesterol-depleting compound, on A431 cells. Principal component analysis highlighted the complex and subtle spectral changes of the cells. Keywords: MIR spectroscopy, surface-enhanced infrared absorption, metasurface, metasurface enhanced infrared absorption, MEIRS, cell adhesion, methyl-beta-cyclodextrin, cholesterol 
    more » « less