skip to main content


Title: Direct calculation of the temperature dependence of 2D-IR spectra: Urea in water
A method for directly calculating the temperature derivative of two-dimensional infrared (2D-IR) spectra from simulations at a single temperature is presented. The approach is demonstrated by application to the OD stretching spectrum of isotopically dilute aqueous (HOD in H 2 O) solutions of urea as a function of concentration. Urea is an important osmolyte because of its ability to denature proteins, which has motivated significant interest in its effect on the structure and dynamics of water. The present results show that the temperature dependence of both the linear IR and 2D-IR spectra, which report on the underlying energetic driving forces, is more sensitive to urea concentration than the spectra themselves. Additional physical insight is provided by calculation of the contributions to the temperature derivative from different interactions, e.g., water–water, water–urea, and urea–urea, present in the system. Finally, it is demonstrated how 2D-IR spectra at other temperatures can be obtained from only room temperature simulations.  more » « less
Award ID(s):
2102656 2117449 1950293
NSF-PAR ID:
10414565
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
6
ISSN:
0021-9606
Page Range / eLocation ID:
064507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application. 
    more » « less
  2. The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+and Eigen H9O4+ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.

     
    more » « less
  3. Abstract The present work reports facile synthesis of CuFe 2 O 4 nanoparticles via co-precipitation method and formulation of its nanohybrids with polythiophene (PTh). The structural and morphological properties were investigated using fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectra (SEM-EDS) and UV–Vis spectroscopy. The band gap was found to decrease with increase in the loading of PTh and was found to be 2.52 eV for 1-PTh/CuFe 2 O 4 , 2.15 eV for 3-PTh/CuFe 2 O 4 and 1.89 eV for 5-PTh/CuFe 2 O 4 . The nanohybrids were utilized as photocatalysts for visible light induced degradation of diphenyl urea. Diphenyl urea showed 65% degradation using 150 mg catalyst within 120 min. Polyethylene (PE) was also degraded using these nanohybrids under visible light as well as microwave irradiation to compare its catalytic efficiency under both conditions. Almost 50% of PE was degraded under microwave and 22% under visible light irradiation using 5-PTh/CuFe 2 O 4 . The degraded diphenyl urea fragments were analyzed using LCMS and a tentative mechanism of degradation was proposed. 
    more » « less
  4. Abstract

    Herein, we probe the hydrogen bond‐driven self‐assembly of a triphenylamine (TPA) bis‐urea macrocycle in the presence and absence of guests. Comprised of methylene urea‐bridged TPAs with exterior tridodecyloxy benzene solubilizing groups, the macrocycle exhibits concentration‐dependent aggregate formation in THF and H2O/THF mixtures as characterized by1H NMR and DOSY experiments. Its assembly processes were further probed by temperature‐dependent UV/Vis and fluorescence spectroscopy. Upon heating, UV/Vis spectra exhibit a hypsochromic shift in the λmax, while fluorescence spectra show an increase in emission intensity. Conversely, the protected macrocycle that lacks hydrogen bond donors demonstrates no significant change. Thermodynamic analysis indicates a cooperative self‐assembly pathway with distinct nucleation and elongation regimes. The morphology and structure of the aggregate were elucidated by dynamic light scattering, atomic force microscopy, scanning and transmission electron microscopy. Variable temperature emission spectra were utilized to monitor the impact of guests, such as diphenylacetylene, that can be bound in the columnar channels. The findings suggest that the elongation of assemblies is influenced by the presence of these guests. In comparison, diphenyl sulfoxide, likely functioning as a chain stopper, limited the assembly size. These studies suggest that judicious selection of (co)monomers may modulate the function and utility of these supramolecular systems.

     
    more » « less
  5. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less