As is well known, cluster transformations in cluster structures of geometric type are often modeled on determinant identities, such as short Plücker relations, Desnanot– Jacobi identities, and their generalizations. We present a construction that plays a similar role in a description of generalized cluster transformations and discuss its applications to generalized cluster structures in GL_n compatible with a certain subclass of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GL_n, and in spaces of periodic difference operators.
more »
« less
Elliptic bihamiltonian structures from relative shifted Poisson structures
Abstract In this paper, generalizing our previous construction, we equip the relative moduli stack of complexes over a Calabi–Yau fibration (possibly with singular fibers) with a shifted Poisson structure. Applying this construction to the anticanonical linear systems on surfaces, we get examples of compatible Poisson brackets on projective spaces extending Feigin–Odesskii Poisson brackets. Computing explicitly the corresponding compatible brackets coming from Hirzebruch surfaces, we recover the brackets defined by Odesskii–Wolf.
more »
« less
- Award ID(s):
- 2001224
- PAR ID:
- 10521214
- Publisher / Repository:
- London Mathematical Society
- Date Published:
- Journal Name:
- Journal of Topology
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1753-8416
- Page Range / eLocation ID:
- 1389 to 1422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We continue the study of multiple cluster structures in the rings of regular functions on $$GL_n$$, $$SL_n$$ and $$\operatorname{Mat}_n$$ that are compatible with Poisson-Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin-Drinfeld classification of Poisson--Lie structures on a semisimple complex group $$\mathcal G$$ corresponds to a cluster structure in $$\mathcal O(\mathcal G)$$. Here we prove this conjecture for a large subset of Belavin-Drinfeld (BD) data of $$A_n$$ type, which includes all the previously known examples. Namely, we subdivide all possible $$A_n$$ type BD data into oriented and non-oriented kinds. In the oriented case, we single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson-Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on $$SL_n$$ compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of $$SL_n$$ equipped with two different Poisson-Lie brackets. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address this situation in future publications.more » « less
-
null (Ed.)By a fundamental theorem of D. Quillen, there is a natural duality - an instance of general Koszul duality - between differential graded (DG) Lie algebras and DG cocommutative coalgebras defined over a field k of characteristic 0. A cyclic pairing (i.e., an inner product satisfying a natural cyclicity condition) on the cocommutative coalgebra gives rise to an interesting structure on the universal enveloping algebra Ua of the Koszul dual Lie algebra a called the derived Poisson bracket. Interesting special cases of the derived Poisson bracket include the Chas-Sullivan bracket on string topology. We study the derived Poisson brackets on universal enveloping algebras Ua, and their relation to the classical Poisson brackets on the derived moduli spaces DRep_g(a) of representations of a in a finite dimensional reductive Lie algebra g. More specifically, we show that certain derived character maps of a intertwine the derived Poisson bracket with the classical Poisson structure on the representation homology HR(a, g) related to DRep_g(a).more » « less
-
We continue the study of multiple cluster structures in the rings of regular functions on , and that are compatible with Poisson–Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on a semisimple complex group corresponds to a cluster structure in . Here we prove this conjecture for a large subset of Belavin–Drinfeld (BD) data of type, which includes all the previously known examples. Namely, we subdivide all possible type BD data into oriented and non-oriented kinds. We further single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any oriented BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson–Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of equipped with two different Poisson-Lie brackets. Similar results hold for aperiodic non-oriented BD data, but the analysis of the corresponding regular cluster structure is more involved and not given here. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address these situations in future publications.more » « less
An official website of the United States government

