skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent advances in tolerancing illumination optics
Tolerancing is a critical step in creating successful commercial products. We explore recent advances in tolerancing illumination optics with particular emphasis on surface perturbations and extended sources.  more » « less
Award ID(s):
1822049 2310640
PAR ID:
10521217
Author(s) / Creator(s):
; ;
Editor(s):
Aikens, David M; Rehn, Henning; Thibault, Simon; Uhlendorf, Kristina
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510668508
Page Range / eLocation ID:
12
Format(s):
Medium: X
Location:
Quebec City, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a methodology for illumination optics tolerancing. Specifically, we investigate tolerancing deformation of a single freeform surface under a point source illumination. Through investigation, we recognized and report here three surface-deformation characteristics that build tolerancing intuitions. First, we show that positive and negative irradiance changes occur together as a consequence of flux conservation. Then, we demonstrate a linear relationship between the steepness of the surface perturbation and the magnitude of the irradiance change. Lastly, we show that the Laplacian magic mirror concept (M. V. Berry [Eur. J. Phys.27,109(2006)10.1088/0143-0807/27/1/012]) can be expanded to surface deformation tolerancing. Utilizing these surface deformation characteristics, we propose a fast and predictable tolerancing method for a sequential illumination optic. 
    more » « less
  2. Abstract Tolerancing began with the notion of limits imposed on the dimensions of realized parts both to maintain functional geometric dimensionality and to enable cost-effective part fabrication and inspection. Increasingly, however, component fabrication depends on more than part geometry as many parts are fabricated as a result of a “recipe” rather than dimensional instructions for material addition or removal. Referred to as process tolerancing, this is the case, for example, with IC chips. In the case of tolerance optimization, a typical objective is cost minimization while achieving required functionality or “quality.” This article takes a different look at tolerances, suggesting that rather than ensuring merely that parts achieve a desired functionality at minimum cost, a typical underlying goal of the product design is to make money, more is better, and tolerances comprise additional design variables amenable to optimization in a decision theoretic framework. We further recognize that tolerances introduce additional product attributes that relate to product characteristics such as consistency, quality, reliability, and durability. These important attributes complicate the computation of the expected utility of candidate designs, requiring additional computational steps for their determination. The resulting theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi’s loss function. We illustrate the theory using the example of tolerancing for an apple pie, which conveniently demands consideration of tolerances on both quantities and processes, and the interaction among these tolerances. 
    more » « less
  3. Tolerancing began with the notion of limits imposed on the dimensions of realized parts both to maintain functional geometric dimensionality and to enable cost-effective part fabrication and inspection. Increasingly however, component fabrication depends on more than part geometry as many parts are fabricated as a result of a "recipe" rather than dimensional instructions for material addition or removal. Referred to as process tolerancing, this is the case, for example, with IC chips. In the case of tolerance optimization, a typical objective is cost minimization while achieving required functionality or "quality." This paper takes a different look at tolerances, suggesting that rather than ensuring merely that parts achieve a desired functionality at minimum cost, the underlying goal of product design is to make money, more is better and tolerances comprise additional design variables amenable to optimization in a decision theoretic framework. We further recognize that tolerances introduce additional product attributes that relate to product characteristics such as consistency, quality, reliability and durability. These important attributes complicate the computation of the expected utility of candidate designs, requiring additional computational steps for their determination. The resulting theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi's loss function. We illustrate the theory using the example of tolerancing for an apple pie, which conveniently demands consideration of tolerances on both quantities and processes, and the interaction among these tolerances. 
    more » « less
  4. Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are challenging and require new tools to augment simple surface statistics to better represent the structured characteristics of these errors. A novel surface specification method is developed by considering the structured and anisotropic nature of MSF errors and their impact on the modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error values in polar coordinates which contains the surface error anisotropy information and enables an easy to understand acceptance criterion. Methods, application examples, and the connection of this surface specification approach to the MTF are discussed. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less
  5. This study explores the use of mini-fabrication exercises for helping students learn design for rapid prototyping in computer-aided design and prototyping courses in engineering curricula. To this end, we conducted mini-fabrication exercises in ME444 — an undergraduate course at Purdue University. The exercises provide hands-on exposure to design for rapid prototyping principles using simplified design problems. We developed two mini-fabrication exercises in ME444; (i) gear pair design & box design using laser cutting, and (ii) toy catapult design using stereolithography printing. These exercises were tested in a classroom-setting with 51 undergraduate students. Results show the mini-fabrication exercises facilitated students’ learning of geometric dimensioning & tolerancing, part sizing, and material properties in laser cutting and stereolithography printing. 
    more » « less