skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymptotic dimension of minor-closed families and Assouad–Nagata dimension of surfaces
Award ID(s):
1954054 1929851
PAR ID:
10521268
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Journal of the European Mathematical Society
Volume:
26
Issue:
10
ISSN:
1435-9855
Page Range / eLocation ID:
3739 to 3791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conference on Learning Theory 2020 
    more » « less
  2. abstract: We examine caloric measures $$\omega$$ on general domains in $$\RR^{n+1}=\RR^n\times\RR$$ (space $$\times$$ time) from the perspective of geometric measure theory. On one hand, we give a direct proof of a consequence of a theorem of Taylor and Watson (1985) that the lower parabolic Hausdorff dimension of $$\omega$$ is at least $$n$$ and $$\omega\ll\Haus^n$$. On the other hand, we prove that the upper parabolic Hausdorff dimension of $$\omega$$ is at most $$n+2-\beta_n$$, where $$\beta_n>0$$ depends only on $$n$$. Analogous bounds for harmonic measures were first shown by Nevanlinna (1934) and Bourgain (1987). Heuristically, we show that the \emph{density} of obstacles in a cube needed to make it unlikely that a Brownian motion started outside of the cube exits a domain near the center of the cube must be chosen according to the ambient dimension. In the course of the proof, we give a caloric measure analogue of Bourgain's alternative: for any constants $$0<\epsilon\ll_n \delta<1/2$ and closed set $$E\subset\RR^{n+1}$$, either (i) $$E\cap Q$$ has relatively large caloric measure in $$Q\setminus E$$ for every pole in $$F$$ or (ii) $$E\cap Q_*$$ has relatively small $$\rho$$-dimensional parabolic Hausdorff content for every $$n<\rho\leq n+2$$, where $$Q$$ is a cube, $$F$$ is a subcube of $$Q$$ aligned at the center of the top time-face, and $$Q_*$$ is a subcube of $$Q$$ that is close to, but separated backwards-in-time from $$F$$: \begin{gather*} Q=(-1/2,1/2)^n\times (-1,0),\quad F=[-1/2+\delta,1/2-\delta]^n\times[-\epsilon^2,0),\\[2pt] \text{and }Q_*=[-1/2+\delta,1/2-\delta]^n\times[-3\epsilon^2,-2\epsilon^2]. \end{gather*} Further, we supply a version of the strong Markov property for caloric measures. 
    more » « less