skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Geolocation of the Ionospheric Irregularities in the Equatorial F Layer by Back Propagation of COSMIC‐2 Radio Occultation Signals
Abstract Plasma irregularities in the ionosphere induce scintillation of radio signals. Radio occultation (RO) observations of the Global Navigation Satellite Systems (GNSS) signals from low Earth orbit (LEO) allow monitoring of the ionospheric scintillation. Under certain conditions, it is possible to localize (geolocate) plasma irregularities along the line‐of‐sight between the GNSS and LEO satellites. While several techniques have been considered for the localization, in this study we use the back propagation (BP) of complex RO signals (phase and amplitude) measured at a high rate (HR), 50–100 Hz. Our method is based on a numerical solution of the wave equation, originally proposed for geolocation in 2002, with some modifications. We consider theoretical aspects of the BP technique, including assumptions, approximations and limitations, and perform numerical modeling of radio wave propagation. We investigate geolocation by BP for two regions with aligned and mis‐aligned irregularities and explain multi‐valued geolocations. We focus on the equatorial F region, consistent with the COSMIC‐2 observation sampling and use the IGRF‐13 model of the Earth's magnetic field to define the orientation of plasma irregularities. We use our method for processing of COSMIC‐2 HR scintillation data collected from the precise orbit determination antennas for 2 years: 2021 and 2023 (years with low and high solar activity). The results, represented by gridded monthly maps of geolocations, show clear seasonal and interannual variations. Additionally, we present comparison of the geolocations obtained independently from L1 and L2 signals for a 2‐month period.  more » « less
Award ID(s):
2054356
PAR ID:
10615414
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Radio Science
Date Published:
Journal Name:
Radio Science
Volume:
60
Issue:
6
ISSN:
0048-6604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using the high-rate phase and amplitude scintillation data from FORMOSA7/COSMIC two mission and back-propagation method, we geolocate plasma irregularities that cause scintillations. The results of geolocation are compared with the NASA GOLD UV image data of plasma bubbles. The root mean square of the zonal difference between estimated locations of plasma irregularities and plasma bubbles are about 1.5° and for single intersection cases 0.5° in the magnetic longitude. The geolocation data provide more accurate scintillation location around the globe compared to assigning to the tangent point and is valuable space weather product, which will be routinely available for public use. 
    more » « less
  2. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less
  3. Abstract The ground‐based, high‐frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field‐aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over‐the‐horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2πphase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi‐frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data. 
    more » « less
  4. Electron density irregularities in the ionosphere modify the phase and amplitude of trans-ionospheric radio signals. We aim to characterize the spectral and morphological features of E- and F-region ionospheric irregularities likely to produce these fluctuations or “scintillations”. To characterize them, we use a three-dimensional radio wave propagation model—“Satellite-beacon Ionospheric scintillation Global Model of upper Atmosphere” (SIGMA), along with the scintillation measurements observed by a cluster of six Global Positioning System (GPS) receivers called Scintillation Auroral GPS Array (SAGA) at Poker Flat, AK. An inverse method is used to derive the parameters that describe the irregularities by estimating the best fit of model outputs to GPS observations. We analyze in detail one E-region and two F-region events during geomagnetically active times and determine the E- and F-region irregularity characteristics using two different spectral models as input to SIGMA. Our results from the spectral analysis show that the E-region irregularities are more elongated along the magnetic field lines with rod-shaped structures, while the F-region irregularities have wing-like structures with irregularities extending both along and across the magnetic field lines. We also found that the spectral index of the E-region event is less than the spectral index of the F-region events. Additionally, the spectral slope on the ground at higher frequencies is less than the spectral slope at irregularity height. This study describes distinctive morphological and spectral features of irregularities at E- and F-regions for a handful of cases performed using a full 3D propagation model coupled with GPS observations and inversion. 
    more » « less
  5. As part of an effort to observe and study ionospheric disturbances and their effects on radio signals used by Global Navigation Satellite Systems (GNSS), alternative low-cost GNSS-based ionospheric scintillation and total electron content (TEC) monitors have been deployed over the American sector. During an inspection of the observations made on 28 August 2022, we found increases in the amplitude scintillation index (S4) reported by the monitors for the period between approximately 17:45 UT and 18:20 UT. The distributed, dual-frequency observations made by the sensors allowed us to determine that the increases in S4were not caused by ionospheric irregularities. Instead, they resulted from Carrier-to-Noise (C/No) variations caused by a solar radio burst (SRB) event that followed the occurrence of two M-class X-ray solar flares and a Halo coronal mass ejection. The measurements also allowed us to quantify the impact of the SRB on GNSS signals. The observations show that the SRB caused maximum C/No fadings of about 8 dB-Hz (12 dB-Hz) on L1 ~ 1.6 GHz (L2 ~ 1.2 GHz) for signals observed by the monitor in Dallas for which the solar zenith angle was minimum (~24.4°) during the SRB. Calculations using observations made by the distributed monitors also show excellent agreement for estimates of the maximum (vertical equivalent) C/No fadings in both L1 and L2. The calculations show maximum fadings of 9 dB-Hz for L1 and of 13 dB-Hz for L2. Finally, the results exemplify the usefulness of low-cost monitors for studies beyond those associated with ionospheric irregularities and scintillation. 
    more » « less