skip to main content


Title: Reversible O–O Bond Scission and O 2 Evolution at MOF-Supported Tetramanganese Clusters
Award ID(s):
2105495
NSF-PAR ID:
10521536
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
30
ISSN:
0002-7863
Page Range / eLocation ID:
16872 to 16878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s−1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs. 
    more » « less
  2. Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SO⋯H 2 O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of −2.71 kcal mol −1 and a zero kelvin enthalpy of −1.67 kcal mol −1 , while the chalcogen bonded complex has an electronic energy of −2.64 kcal mol −1 and a zero kelvin enthalpy of −2.00 kcal mol −1 . We also report the transition state between the two structures, which lies below the SO⋯H 2 O dissociation limit, with an electronic energy of −1.26 kcal mol −1 and an enthalpy of −0.81 kcal mol −1 . These features are much sharper than for the isovalent complex of O 2 and H 2 O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between O 2 and H 2 O are uniformly weak, but the SO⋯H 2 O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell. 
    more » « less
  3. Abstract

    The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3and BiBO3are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3glasses in increments ofx = 5, with11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass ofx = 40.

     
    more » « less
  4. Abstract

    The current study shows a new attempt to develop gamma‐ray shielding glasses. The proposed glass is a borate‐base composition modified with sodium and cadmium oxides and different concentrations of bismuth oxide. Based on the melt‐quenching technique, we prepared four glass compositions of 20NaO‐15CdO‐ (65−x)B2O3xBi2O3, wherex = 0, 10, 20, and 30 mol%. The amorphous nature of the prepared samples was confirmed by XRD. To get more details about the structure, FTIR and UV‐Vis‐NIR were performed to characterize the prepared glasses. Moreover, we used ab initio molecular dynamics simulations to create the possible structures of the new compositions, and compared with the experimental measurements. A series of shielding parameters was investigated based on the gamma‐ray emission in the range of 0.01‐10 MeV. The results revealed an improvement of the shielding parameters with increasing of Bi2O3content. The sample with the highest Bi2O3(S4) has the highestZeffand least HVL, while S1 (with no Bi2O3content) has the lowestZeffat all energy levels. The gamma‐ray transmission factor of the prepared glasses was compared with some commercial concretes. Finally, the new glasses especially with highest Bi2O3are recommended to use in gamma radiation shielding facilities.

     
    more » « less