skip to main content


Title: First-principles property assessment of hybrid formate perovskites

Hybrid organic–inorganic formate perovskites, AB(HCOO)3, are a large family of compounds that exhibit a variety of phase transitions and diverse properties, such as (anti)ferroelectricity, ferroelasticity, (anti)ferromagnetism, and multiferroism. While many properties of these materials have already been characterized, we are not aware of any study that focuses on the comprehensive property assessment of a large number of formate perovskites. A comparison of the properties of materials within the family is challenging due to systematic errors attributed to different techniques or the lack of data. For example, complete piezoelectric, dielectric, and elastic tensors are not available. In this work, we utilize first-principles density functional theory based simulations to overcome these challenges and to report structural, mechanical, dielectric, piezoelectric, and ferroelectric properties of 29 formate perovskites. We find that these materials exhibit elastic stiffness in the range 0.5–127.0 GPa; highly anisotropic linear compressibility, including zero and even negative values; dielectric constants in the range 0.1–102.1; highly anisotropic piezoelectric response with the longitudinal values in the range 1.18–21.12 pC/N; and spontaneous polarizations in the range 0.2–7.8 μC/cm2. Furthermore, we propose and computationally characterize a few formate perovskites that have not been reported yet.

 
more » « less
Award ID(s):
2029800
NSF-PAR ID:
10521558
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
7
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    2D anisotropic materials, such as black phosphorus, ReS2, and GaTe, have been shown to exhibit exciting direction‐ and polarization‐sensitive material properties. Highly crystalline chemical‐vapor‐transport‐grown ZrS3crystals exhibit large optical‐absorption‐coefficient anisotropy, which doubles under resonance conditions. The observed optical anisotropy manifests itself in angle‐resolved photocurrent density polar plots with dichroic ratio (Ipb/Ipa) of 1.73 excited by a laser source of λ = 450 nm and 1.14 by λ = 532 nm. The optical absorption and electronic dichroic response are fully explained through detailed band structure and polarization‐sensitive optical‐absorption‐spectrum calculations. Not only is the family of 2D anisotropic semiconductors expanded into Zr‐based trichalcogenides but fundamental insights on how crystalline anisotropy, optical absorption dichroism, and generated photocurrents are interrelated in van der Waals Zr‐based trichalcogenides materials are also provided.

     
    more » « less
  2. Two-dimensional (2D) organic–inorganic hybrid halide perovskites exhibit unique properties, such as long charge carrier lifetimes, high photoluminescence quantum efficiencies, and great tolerance to defects. Over the last several decades tremendous progress has occurred in the development of 2D layered halide perovskite semiconductor materials and devices. Chemical functionalization of 2D halide perovskites is an effective approach for tuning their electronic properties. A large amount of effort has been made in compositional engineering of the cations and anions in the perovskite lattice. However, few efforts have incorporated rationally designed semiconducting organic moieties into these systems to alter the overall chemical and optoelectronic properties of 2D perovskites. In fact, incorporation of large conjugated organic groups in the spatially confined inorganic perovskite matrix was found to be challenging, and this synthetic challenge hinders a deeper understanding of the materials’ structure–property relationships. Recently, exciting progress has been made regarding the molecular design, optical characterization, and device fabrication of novel 2D halide perovskite materials that incorporate functional organic semiconducting building blocks. In this article, we provide a timely review regarding this recent progress. Moreover, we discuss successes and current challenges regarding the synthesis, characterization, and device applications of such hybrid materials and provide a perspective on the true future promise of these advanced nanomaterials. 
    more » « less
  3. Abstract

    Stretchable high‐dielectric‐constant materials are crucial for electronic applications in emerging domains such as wearable computing and soft robotics. While previous efforts have shown promising materials architectures in the form of dielectric nano‐/microinclusions embedded in stretchable matrices, the limited mechanical compliance of these materials significantly limits their practical application as soft energy‐harvesting/storage transducers and actuators. Here, a class of liquid metal (LM)–elastomer nanocomposites is presented with elastic and dielectric properties that make them uniquely suited for applications in soft‐matter engineering. In particular, the role of droplet size is examined and it is found that embedding an elastomer with a polydisperse distribution of nanoscale LM inclusions can enhance its electrical permittivity without significantly degrading its elastic compliance, stretchability, or dielectric breakdown strength. In contrast, elastomers embedded with microscale droplets exhibit similar improvements in permittivity but a dramatic reduction in breakdown strength. The unique enabling properties and practicality of LM–elastomer nanocomposites for use in soft machines and electronics is demonstrated through enhancements in performance of a dielectric elastomer actuator and energy‐harvesting transducer.

     
    more » « less
  4. This article provides a broadband dielectric characterization of different silicate substrates up to 115 GHz, to fill the gap in the properties of different kinds of glasses in a broad part of the mm-wave spectrum. Both the internal structure (crystalline or amorphous) and the chemistry of the substrates influence the permittivity and loss tangent of the material. Quartz and sapphire are crystalline materials that exhibit a low loss in the mm-wave frequency range. Amorphous silicates generally have higher loss values than crystalline materials, and within the glasses, the level of impurities added also affects the dielectric loss. Several characterization techniques have been employed to cover a broad frequency band. The limitations of the different characterization techniques are also included. Once the dielectric properties of substrates are characterized, a metasurface has been designed and fabricated at 100 GHz to increase the reflection in window glass and provide coverage on areas that would otherwise be shadowed. The measurement results are in good agreement with the simulations. 
    more » « less
  5. Using first-principles calculations, we predict highly stable cubic bialkali bismuthides Cs(Na, K)2Bi with several technologically important mechanical and anisotropic elastic properties. We investigate the mechanical and anisotropic elastic properties under hydrostatic tension and compression. At zero pressure, CsK2Bi is characterized by elastic anisotropy with maximum and minimum stiffness along the directions of [111] and [100], respectively. Unlike CsK2Bi, CsNa2Bi exhibits almost isotropic elastic behavior at zero pressure. We found that hydrostatic tension and compression change the isotropic and anisotropic mechanical responses of these compounds. Moreover, the auxetic nature of the CsK2Bi compound is tunable under pressure. This compound transforms into a material with a positive Poisson’s ratio under hydrostatic compression, while it holds a large negative Poisson’s ratio of about −0.45 along the [111] direction under hydrostatic tension. An auxetic nature is not observed in CsNa2Bi, and Poisson’s ratio shows completely isotropic behavior under hydrostatic compression. A directional elastic wave velocity analysis shows that hydrostatic pressure effectively changes the propagation pattern of the elastic waves of both compounds and switches the directions of propagation. Cohesive energy, phonon dispersion, and Born–Huang conditions show that these compounds are thermodynamically, mechanically, and dynamically stable, confirming the practical feasibility of their synthesis. The identified mechanisms for controlling the auxetic and anisotropic elastic behavior of these compounds offer a vital feature for designing and developing high-performance nanoscale electromechanical devices. 
    more » « less