Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch clamp recording in the mouse retinal ganglion cells was performed. Key proteins involved in apoptosis, endoplasmic reticulum (ER) stress, and heat shock proteins were analyzed using immunoblotting. Carb is effective in protecting PC12 cells against glutamate- or hypoxia-induced cell injury. Electrophysiological results show that Carb attenuates NMDA-mediated glutamate currents in the retinal ganglion cells, which results in activation of the AKT signaling pathway and increased expression of pro-cell survival biomarkers, e.g., Hsp 27, P-AKT, and Bcl2 and decreased expression of pro-cell death markers, e.g., Beclin 1, Bax, and Cleaved caspase 3, and ER stress markers, e.g., CHOP, IRE1, XBP1, ATF 4, and eIF2α. Using the BCAO animal stroke model, we found that Carb reduced the brain infarct volume and decreased levels of ER stress markers, GRP 78, CHOP, and at the behavioral level, e.g., a decrease in asymmetric turns and an increase in locomotor activity. These findings for Carb provide promising and rational strategies for stroke therapy.
more » « less- Award ID(s):
- 2126141
- NSF-PAR ID:
- 10521658
- Editor(s):
- Fregni, F
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Biomedicines
- Edition / Version:
- 1
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2227-9059
- Page Range / eLocation ID:
- 1885
- Subject(s) / Keyword(s):
- Carbamathione (Carb) glutamate hypoxia endoplasmic reticulum (ER) stress PC-12 cell culture stroke whole-cell patch clamp and bilateral carotid artery occlusion (BCAO)
- Format(s):
- Medium: X Size: 5.2 Other: cxv
- Size(s):
- 5.2
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Prostate cancer (PCa) is the most common invasive malignancy for men in the USA. The incidence and mortality rates of PCa are significantly higher among African American men, as compared to those in Caucasian men. Betulinic acid (BA) is a penta-cyclic triterpenoid that is often found in the bark of several species of plants. It possesses a variety of biological activities, including anti-cancer activities. We examined the cytotoxic effects and endoplasmic reticulum (ER) stress induced by BA and its ionic derivatives with PCa cells derived from African Americans and Caucasian men. The viability of all PCa cells was reduced by the BA compounds, and the cytotoxicity of these BA compounds was independent of ethnicity and androgen dependency. The BA compounds induced modest effects on ER stress proteins when compared with ER stress inducers, tunicamycin and thapsigargin. The induction of glucose regulated protein 78 (GRP78) was largely correlated with the expression of C/EBP homologous protein (CHOP) and cleaved poly [ADP-ribose] polymerase (PARP)/caspase-3 in the PCa cells. In summary, our data demonstrated that BA compounds impaired the growth of PCa cells regardless of ethnicity – through GRP78- and CHOP-independent pathways.more » « less
-
Endoplasmic reticulum (ER) stress has been causatively linked to the onset of various pathologies. However, if and how inherent variations in the resulting unfolded protein response (UPR) affect the predisposition to ER stress-associated metabolic conditions remains to be established. By using genetically diverse deer mice (Peromyscus maniculatus) as a model, we show that the profile of tunicamycin-induced UPR in fibroblasts isolated at puberty varies between individuals and predicts deregulation of lipid metabolism and diet-induced hepatic steatosis later in life. Among the different UPR targets tested, CHOP more consistently predicted elevated plasma cholesterol and hepatic steatosis. Compared to baseline levels or inducibility, the maximal intensity of the UPR following stimulation best predicts the onset of pathology. Differences in the expression profile of the UPR recorded in cells from different populations of deer mice correlate with the varying response to ER stress in altitude adaptation. Our data suggest that the response to ER stress in cultured cells varies among individuals and its profile early in life may predict the onset of ER stress-associated disease in the elderly.more » « less
-
Abstract Aberrant activation of endoplasmic reticulum (ER) stress by extrinsic and intrinsic factors contributes to tumorigenesis and resistance to chemotherapies in various cancer types. Our previous studies have shown that the downregulation of PHLPP, a novel family of Ser/Thr protein phosphatases, promotes tumor initiation, and progression. Here we investigated the functional interaction between the ER stress and PHLPP expression in colon cancer. We found that induction of ER stress significantly decreased the expression of PHLPP proteins through a proteasome-dependent mechanism. Knockdown of PHLPP increased the phosphorylation of eIF2α as well as the expression of autophagy-associated genes downstream of the eIF2α/ATF4 signaling pathway. In addition, results from immunoprecipitation experiments showed that PHLPP interacted with eIF2α and this interaction was enhanced by ER stress. Functionally, knockdown of PHLPP improved cell survival under ER stress conditions, whereas overexpression of a degradation-resistant mutant PHLPP1 had the opposite effect. Taken together, our studies identified ER stress as a novel mechanism that triggers PHLPP downregulation; and PHLPP-loss promotes chemoresistance by upregulating the eIF2α/ATF4 signaling axis in colon cancer cells.
-
Abstract Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1(IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of
ATF6β decreased cell growth without decreasing titer; however, knockdown ofWFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship betweenATF6β andWFS1 expression, but upregulation ofWFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown ofWFS1 had negative impacts on UPR activation and product mRNA expression, knockdown ofATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity. -
Abstract Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFβR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFβR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFβR and non-TGFβR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.