skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2126141

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pannexin 1 (Panx1) forms large-pore, single-membrane channels that connect the intracellular and extracellular environments, permitting the passage of ions and small molecules such as ATP. Panx1 channels are involved in diverse signaling pathways that contribute to various physiological processes, including sensory processing, although their precise mechanisms of action remain incompletely understood. This study reveals a Panx1-mediated mechanism regulating visual signal processing in the amphibian retina. Using immunolabeling and confocal imaging, we localized Panx1 channels in the cone-dominated On-bipolar cells, specifically at both somas and axon terminals. Whole-cell patch-clamp recordings showed that these channels have high permeability to Cl⁻ ions, which can be blocked by10Panx1 peptide, carbenoxolone, and mefloquine, all recognized as Panx1 inhibitors. Blocking Panx1 channels or reducing external Cl⁻ concentrations significantly increased bright light-induced delayed spontaneous excitatory responses in ganglion cells, indicating an inhibitory role of Panx1 channels at the bipolar cell synaptic release. These delayed spontaneous responses in ganglion cells, known as rebound currents, are associated with afterimage signals in the retina. Our findings suggest that Panx1 channels help prevent over-excitation associated with bright light-induced afterimage phenomena. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  2. Fliesler, S (Ed.)
    Abnormal vasculature in the retina, specifically tortuous vessels and capillary degeneration, is common in many of the most prevalent retinal degenerative diseases, currently affecting millions of people across the world. However, the formation and development of abnormal vasculature in the context of retinal degenerative diseases are still poorly understood. The FVB/N (rd1) and rd10 mice are well-studied animal models of retinal degenerative diseases, but how photoreceptor degeneration leads to vascular abnormality in the diseases remains to be elucidated. Here, we used advancements in confocal microscopy, immunohistochemistry, and image analysis software to systematically characterize the pathological vasculature in the FVB/N (rd1) and rd10 mice, known as a chronic, rapid and slower retinal degenerative model, respectively. We demonstrated that there was plexusspecific vascular degeneration in the retinal trilaminar vascular network paralleled to photoreceptor degeneration in the diseased retinas. We also quantitatively analyzed the vascular structural architecture in the wild-type and diseased retinas to provide valuable information on vascular remodeling in retinal degenerative disease 
    more » « less
  3. Fregni, F (Ed.)
    Carbamathione (Carb), an NMDA glutamate receptor partial antagonist, has potent neuroprotective functions against hypoxia- or ischemia-induced neuronal injury in cell- or animal-based stroke models. We used PC-12 cell cultures as a cell-based model and bilateral carotid artery occlusion (BCAO) for stroke. Whole-cell patch clamp recording in the mouse retinal ganglion cells was performed. Key proteins involved in apoptosis, endoplasmic reticulum (ER) stress, and heat shock proteins were analyzed using immunoblotting. Carb is effective in protecting PC12 cells against glutamate- or hypoxia-induced cell injury. Electrophysiological results show that Carb attenuates NMDA-mediated glutamate currents in the retinal ganglion cells, which results in activation of the AKT signaling pathway and increased expression of pro-cell survival biomarkers, e.g., Hsp 27, P-AKT, and Bcl2 and decreased expression of pro-cell death markers, e.g., Beclin 1, Bax, and Cleaved caspase 3, and ER stress markers, e.g., CHOP, IRE1, XBP1, ATF 4, and eIF2α. Using the BCAO animal stroke model, we found that Carb reduced the brain infarct volume and decreased levels of ER stress markers, GRP 78, CHOP, and at the behavioral level, e.g., a decrease in asymmetric turns and an increase in locomotor activity. These findings for Carb provide promising and rational strategies for stroke therapy. 
    more » « less