Abstract Hyperbolic metamaterials (HMM) possess significant anisotropic physical properties and tunability and thus find many applications in integrated photonic devices. HMMs consisting of metal and dielectric phases in either multilayer or vertically aligned nanocomposites (VAN) form are demonstrated with different hyperbolic properties. Herein, self‐assembled HfO2‐Au/TiN‐Au multilayer thin films, combining both the multilayer and VAN designs, are demonstrated. Specifically, Au nanopillars embedded in HfO2and TiN layers forming the alternative layers of HfO2‐Au VAN and TiN‐Au VAN. The HfO2and TiN layer thickness is carefully controlled by varying laser pulses during pulsed laser deposition (PLD). Interestingly, tunable anisotropic physical properties can be achieved by adjusting the bi‐layer thickness and the number of the bi‐layers. Type II optical hyperbolic dispersion can be obtained from high layer thickness structure (e.g., 20 nm), while it can be transformed into Type I optical hyperbolic dispersion by reducing the thickness to a proper value (e.g., 4 nm). This new nanoscale hybrid metamaterial structure with the three‐phase VAN design shows great potential for tailorable optical components in future integrated devices.
more »
« less
Topological hyperbolic metamaterials
Abstract Hyperbolic metamaterial (HMM) is a unique type of anisotropic material that can exhibit metal and dielectric properties at the same time. This unique characteristic results in it having unbounded isofrequency surface contours, leading to exotic phenomena such as spontaneous emission enhancement and applications such as super-resolution imaging. However, at optical frequencies, HMM must be artificially engineered and always requires a metal constituent, whose intrinsic loss significantly limits the experimentally accessible wave vector values, thus negatively impacting the performance of these applications. The need to reduce loss in HMM stimulated the development of the second-generation HMM, termed active HMM, where gain materials are utilized to compensate for metal’s intrinsic loss. With the advent of topological photonics that allows robust light transportation immune to disorders and defects, research on HMM also entered the topological regime. Tremendous efforts have been dedicated to exploring the topological transition from elliptical to hyperbolic dispersion and topologically protected edge states in HMM, which also prompted the invention of lossless HMM formed by all-dielectric material. Furthermore, emerging twistronics can also provide a route to manipulate topological transitions in HMMs. In this review, we survey recent progress in topological effects in HMMs and provide prospects on possible future research directions.
more »
« less
- PAR ID:
- 10521702
- Publisher / Repository:
- Nanophotonics
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 825 to 839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light–matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide–metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide–metal metamaterial system, CeO 2 –Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO 2 –Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO 2 matrix instead of the well-matched SrTiO 3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α , has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning.more » « less
-
The first generation of hyperbolic metamaterials, metasurfaces, and naturally hyperbolic materials (HMMs) utilized the static and passive properties of their constituent metallic and dielectric components to achieve intriguing macroscopic behavior, such as imaging and focusing of light below the diffraction limit and the broadband modification to the rate of spontaneous emission. While promising, and operating from RF frequencies to the ultraviolet, many potential applications of early HMMs were spoiled by inflexible operation and dissipation losses. Recently, the use of dynamically tunable and active constituent materials has increased, guiding HMMs into more functional regimes. In this review we survey the state-of-the-art of tunable and active electromagnetic HMMs. Based on a firm theoretical foundation, we review the most recent experimental work on hyperbolic dispersion endowed with a tunable or active character. Additionally, we review proposed ideas that may inspire new experimental work and offer a comparison to other photonic platforms.more » « less
-
Abstract SummaryMultiple sequence alignment is an important problem in computational biology with applications that include phylogeny and the detection of remote homology between protein sequences. UPP is a popular software package that constructs accurate multiple sequence alignments for large datasets based on ensembles of hidden Markov models (HMMs). A computational bottleneck for this method is a sequence-to-HMM assignment step, which relies on the precise computation of probability scores on the HMMs. In this work, we show that we can speed up this assignment step significantly by replacing these HMM probability scores with alternative scores that can be efficiently estimated. Our proposed approach utilizes a multi-armed bandit algorithm to adaptively and efficiently compute estimates of these scores. This allows us to achieve similar alignment accuracy as UPP with a significant reduction in computation time, particularly for datasets with long sequences. Availability and implementationThe code used to produce the results in this paper is available on GitHub at: https://github.com/ilanshom/adaptiveMSA.more » « less
-
Abstract The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of states for various nanophotonic applications.more » « less
An official website of the United States government

