Conformational polymorphs of organic molecular crystals represent a challenging test for quantum chemistry because they require careful balancing of the intra- and intermolecular interactions. This study examines 54 molecular conformations from 20 sets of conformational polymorphs, along with the relative lattice energies and 173 dimer interactions taken from six of the polymorph sets. These systems are studied with a variety of van der Waals-inclusive density functionals theory models; dispersion-corrected spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2D); and domain local pair natural orbital coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)]. We investigate how delocalization error in conventional density functionals impacts monomer conformational energies, systematic errors in the intermolecular interactions, and the nature of error cancellation that occurs in the overall crystal. The density functionals B86bPBE-XDM, PBE-D4, PBE-MBD, PBE0-D4, and PBE0-MBD are found to exhibit sizable one-body and two-body errors vs DLPNO-CCSD(T) benchmarks, and the level of success in predicting the relative polymorph energies relies heavily on error cancellation between different types of intermolecular interactions or between intra- and intermolecular interactions. The SCS-MP2D and, to a lesser extent, ωB97M-V models exhibit smaller errors and rely less on error cancellation. Implications for crystal structure prediction of flexible compounds are discussed. Finally, the one-body and two-body DLPNO-CCSD(T) energies taken from these conformational polymorphs establish the CP1b and CP2b benchmark datasets that could be useful for testing quantum chemistry models in challenging real-world systems with complex interplay between intra- and intermolecular interactions, a number of which are significantly impacted by delocalization error.
more »
« less
This content will become publicly available on December 1, 2025
Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction
Accurate modeling of conformational energies is key to the crystal structure prediction of conformational polymorphs. Focusing on molecules XXXI and XXXII from the seventh blind test of crystal structure prediction, this study employs various electronic structure methods up to the level of domain-local pair natural orbital coupled cluster singles and doubles with perturbative triples [DLPNO-CCSD(T1)] to benchmark the conformational energies and to assess their impact on the crystal energy landscapes. Molecule XXXI proves to be a relatively straightforward case, with the conformational energies from generalized gradient approximation (GGA) functional B86bPBE-XDM changing only modestly when using more advanced density functionals such as PBE0-D4, ωB97M-V, and revDSD-PBEP86-D4, dispersion-corrected second-order Møller–Plesset perturbation theory (SCS-MP2D), or DLPNO-CCSD(T1). In contrast, the conformational energies of molecule XXXII prove difficult to determine reliably, and variations in the computed conformational energies appreciably impact the crystal energy landscape. Even high-level methods such as revDSD-PBEP86-D4 and SCS-MP2D exhibit significant disagreements with the DLPNO-CCSD(T1) benchmarks for molecule XXXII, highlighting the difficulty of predicting conformational energies for complex, drug-like molecules. The best-converged predicted crystal energy landscape obtained here for molecule XXXII disagrees significantly with what has been inferred about the solid-form landscape experimentally. The identified limitations of the calculations are probably insufficient to account for the discrepancies between theory and experiment on molecule XXXII, and further investigation of the experimental solid-form landscape would be valuable. Finally, assessment of several semi-empirical methods findsr2SCAN-3c to be the most promising, with conformational energy accuracy intermediate between the GGA and hybrid functionals and a low computational cost.
more »
« less
- Award ID(s):
- 1955554
- PAR ID:
- 10521748
- Publisher / Repository:
- International Union of Crystallography
- Date Published:
- Journal Name:
- Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
- Volume:
- 80
- Issue:
- 6
- ISSN:
- 2052-5206
- Page Range / eLocation ID:
- 606 to 619
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular crystal structure prediction is increasingly being applied to study the solid form landscapes of larger, more flexible pharmaceutical molecules. Despite many successes in crystal structure prediction, van der Waals-inclusive density functional theory (DFT) methods exhibit serious failures predicting the polymorph stabilities for a number of systems exhibiting conformational polymorphism, where changes in intramolecular conformation lead to different intermolecular crystal packings. Here, the stabilities of the conformational polymorphs of o -acetamidobenzamide, ROY, and oxalyl dihydrazide are examined in detail. DFT functionals that have previously been very successful in crystal structure prediction perform poorly in all three systems, due primarily to the poor intramolecular conformational energies, but also due to the intermolecular description in oxalyl dihydrazide. In all three cases, a fragment-based dispersion-corrected second-order Møller–Plesset perturbation theory (MP2D) treatment of the crystals overcomes these difficulties and predicts conformational polymorph stabilities in good agreement with experiment. These results highlight the need for methods which go beyond current-generation DFT functionals to make crystal polymorph stability predictions truly reliable.more » « less
-
With 12 crystal forms, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecabonitrile (a.k.a. ROY) holds the current record for the largest number of fully characterized organic crystal polymorphs. Four of these polymorph structures have been reported since 2019, raising the question of how many more ROY polymorphs await future discovery. Employing crystal structure prediction and accurate energy rankings derived from conformational energy-corrected density functional theory, this study presents the first crystal energy landscape for ROY that agrees well with experiment. The lattice energies suggest that the seven most stable ROY polymorphs (and nine of the twelve lowest-energy forms) on the Z′ = 1 landscape have already been discovered experimentally. Discovering any new polymorphs at ambient pressure will likely require specialized crystallization techniques capable of trapping metastable forms. At pressures above 10 GPa, however, a new crystal form is predicted to become enthalpically more stable than all known polymorphs, suggesting that further high-pressure experiments on ROY may be warranted. This work highlights the value of high-accuracy crystal structure prediction for solid-form screening and demonstrates how pragmatic conformational energy corrections can overcome the limitations of conventional density functionals for conformational polymorphs.more » « less
-
Second-order Møller–Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeling problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description of van der Waals (London) dispersion interactions and reaction thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme's D3 formalism, replaces the uncoupled Hartree–Fock dispersion inherent in MP2 with a more robust coupled Kohn–Sham treatment. The spin-component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model. This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models where completely different spin-scaling parameters were needed for describing reaction energies versus intermolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interactions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and ωB97M-V for systems with ∼100 atoms.more » « less
-
null (Ed.)The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet–triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn–Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T 0 ), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.more » « less
An official website of the United States government
