skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TWISP: a transgenic worm for interrogating signal propagation in Caenorhabditis elegans
Abstract Genetically encoded optical indicators and actuators of neural activity allow for all-optical investigations of signaling in the nervous system. But commonly used indicators, actuators, and expression strategies are poorly suited for systematic measurements of signal propagation at brain scale and cellular resolution. Large-scale measurements of the brain require indicators and actuators with compatible excitation spectra to avoid optical crosstalk. They must be highly expressed in every neuron but at the same time avoid lethality and permit the animal to reach adulthood. Their expression must also be compatible with additional fluorescent labels to locate and identify neurons, such as those in the NeuroPAL cell identification system. We present TWISP, a transgenic worm for interrogating signal propagation, that addresses these needs and enables optical measurements of evoked calcium activity at brain scale and cellular resolution in the nervous system of the nematode Caenorhabditis elegans. In every neuron we express a nonconventional optical actuator, the gustatory receptor homolog GUR-3 + PRDX-2, under the control of a drug-inducible system QF + hGR, and a calcium indicator GCAMP6s, in a background with additional fluorophores from the NeuroPAL cell ID system. We show that this combination, but not others tested, avoids optical crosstalk, creates strong expression in the adult, and generates stable transgenic lines for systematic measurements of signal propagation in the worm brain.  more » « less
Award ID(s):
1845137
PAR ID:
10521863
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GENETICS
Volume:
227
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematodeCaenorhabditis elegansby direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients—often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function. 
    more » « less
  2. Abstract Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states. 
    more » « less
  3. This paper details the development and analysis of a computational neuroscience model, known as a Synthetic Nervous System, for the control of a simulated worm robot. Using a Synthetic Nervous System controller allows for adaptability of the network with minimal changes to the system. The worm robot kinematics are inspired by earthworm peristalsis which relies on the hydrostatic properties of the worm’s body to produce soft-bodied locomotion. In this paper the hydrostatic worm body is approximated as a chain of two dimensional rhombus shaped segments. Each segment has rigid side lengths, joints at the vertices, and a linear actuator to control the segment geometry. The control network is composed of non-spiking neuron and synapse models. It utilizes central pattern generators, coupled via interneurons and sensory feedback, to coordinate segment contractions and produce a peristaltic waveform that propagates down the body of the robot. A direct perturbation Floquet multiplier analysis was performed to analyze the stability of the peristaltic wave’s limit cycle. 
    more » « less
  4. This paper details the development and validation of a dynamic 3D compliant worm-like robot model controlled by a Synthetic Nervous System (SNS). The model was built and simulated in the physics engine Mujoco which is able to approximate soft bodied dynamics and generate contact, gravitational, frictional, and internal forces. These capabilities allow the model to realistically simulate the movements and dynamic behavior of a physical soft-bodied worm-robot. For validation, the results of this simulation were compared to data gathered from a physical worm robot and found to closely match key behaviors such as deformation propagation along the compliant structure and actuator efficiency losses in the middle segments. The SNS controller was previously developed for a simple 2D kinematic model and has been successfully implemented on this 3D model with little alteration. It uses coupled oscillators to generate coordinated actuator control signals and induce peristaltic locomotion. This model will be useful for analyzing dynamic effects during peristaltic locomotion like contact forces and slip as well as developing and improving control algorithms that avoid unwanted slip. 
    more » « less
  5. The mammalian brain consists of an intricate tapestry of cell types, with diversity crucial for function that arises from both differential gene expression and circuit-specific anatomy. Yet, retrieving high-content gene-expression information while retaining 3D positional anatomy at cellular resolution has been difficult, limiting integrative understanding of brain structure and function. Here we introduce and apply a technology for 3D intact-tissue RNA sequencing, termed STARmap (Spatially-resolved Transcript Amplicon Readout Mapping), which integrates highly-specific signal amplification, novel hydrogel-tissue chemistry, and an error-reduction sequencing process. The capabilities of STARmap were tested by mapping from 160 to 1,020 distinct genes simultaneously in sections of mouse brain at single-cell resolution with unprecedented efficiency, accuracy and reproducibility. These experiments led to the discovery of multiple new neocortical cell types, with gene markers and spatial patterns of organization not previously described, by comparison of the molecularly-defined architectures of sensory versus cognitive neocortex, and by quantification of expression of activity-regulated genes as a function of stimulation condition, spatial position, and cell typology. By adapting STARmap to thick tissue blocks, we observed and confirmed a novel molecularly-defined gradient distribution of excitatory neuron subtypes across cubic millimeter-scale volumes (>30,000 cells), and discovered a short-range 3D pattern of self-clustering shared by many inhibitory neuron subtypes that was accurately identifiable with a 3D STARmap approach. 
    more » « less