skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AdaptNet: Policy Adaptation for Physics-Based Character Control
Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available athttps://motion-lab.github.io/AdaptNet.  more » « less
Award ID(s):
2232066 2402338
PAR ID:
10521906
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transfer learning is an effective technique for tuning a deep learning model when training data or computational resources are limited. Instead of training a new model from scratch, the parameters of an existing base model are adjusted for the new task. The accuracy of such a fine-tuned model depends on the suitability of the base model chosen. Model search automates the selection of such a base model by evaluating the suitability of candidate models for a specific task. This entails inference with each candidate model on task-specific data. With thousands of models available through model stores, the computational cost of model search is a major bottleneck for efficient transfer learning. In this work, we presentAlsatian, a novel model search system. Based on the observation that many candidate models overlap to a significant extent and following a careful bottleneck analysis, we propose optimization techniques that are applicable to many model search frameworks. These optimizations include: (i) splitting models into individual blocks that can be shared across models, (ii) caching of intermediate inference results and model blocks, and (iii) selecting a beneficial search order for models to maximize sharing of cached results. In our evaluation on state-of-the-art deep learning models from computer vision and natural language processing, we show thatAlsatianoutperforms baselines by up to 14x. 
    more » « less
  2. null (Ed.)
    Deep Neural Networks (or DNNs) must constantly cope with distribution changes in the input data when the task of interest or the data collection protocol changes. Retraining a network from scratch to combat this issue poses a significant cost. Meta-learning aims to deliver an adaptive model that is sensitive to these underlying distribution changes, but requires many tasks during the meta-training process. In this paper, we propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt DNNs to new tasks by using a small number of training examples. AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model. It then uses Bayesian dropout uncertainty estimates to actively select the most difficult samples when updating the model to a new task. This allows AGILE to learn with fewer tasks and a few informative samples, achieving high performance with a limited dataset. We perform our experiments using the brain cell classification task and compare the results to a plain meta-learning model trained from scratch. We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step with a limited number of training samples. We show that active learning with Bayesian uncertainty can further improve the performance when the number of training samples is extremely small. Using only 1% of the training data and a single update step, we achieved 90% accuracy on the new cell type classification task, a 50% points improvement over a state-of-the-art meta-learning algorithm. 
    more » « less
  3. Robot social navigation is influenced by human preferences and environment-specific scenarios such as elevators and doors, thus necessitating end-user adaptability. State-of-the-art approaches to social navigation fall into two categories: model-based social constraints and learning-based approaches. While effective, these approaches have fundamental limitations – model-based approaches require constraint and parameter tuning to adapt to preferences and new scenarios, while learning-based approaches require reward functions, significant training data, and are hard to adapt to new social scenarios or new domains with limited demonstrations.In this work, we propose Iterative Dimension Informed Program Synthesis (IDIPS) to address these limitations by learning and adapting social navigation in the form of human-readable symbolic programs. IDIPS works by combining pro-gram synthesis, parameter optimization, predicate repair, and iterative human demonstration to learn and adapt model-free action selection policies from orders of magnitude less data than learning-based approaches. We introduce a novel predicate repair technique that can accommodate previously unseen social scenarios or preferences by growing existing policies.We present experimental results showing that IDIPS: 1) synthesizes effective policies that model user preference, 2) can adapt existing policies to changing preferences, 3) can extend policies to handle novel social scenarios such as locked doors, and 4) generates policies that can be transferred from simulation to real-world robots with minimal effort. 
    more » « less
  4. Reinforcement Learning from Human Feedback (RLHF) has shown promise in aligning large language models (LLMs). Yet its reliance on a singular reward model often overlooks the diversity of human preferences. Recent approaches address this limitation by leveraging multi-dimensional feedback to fine-tune corresponding reward models and train LLMs using reinforcement learning. However, the process is costly and unstable, especially given the competing and heterogeneous nature of human preferences. In this paper, we propose Mixing Preference Optimization (MPO), a post-processing framework for aggregating single-objective policies as an alternative to both multi-objective RLHF (MORLHF) and MaxMin-RLHF. MPO avoids alignment from scratch. Instead, it log-linearly combines existing policies into a unified one with the weight of each policy computed via a batch stochastic mirror descent. Empirical results demonstrate that MPO achieves balanced performance across diverse preferences, outperforming or matching existing models with significantly reduced computational costs. 
    more » « less
  5. Supervised Continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data. While most work has focused on overcoming catastrophic forgetting, one of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time. Despite recent continual learning methods largely solving the catastrophic forgetting problem, there has been little attention paid to the efficiency of these algorithms. Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage. Some methods even require more compute than training from scratch! We argue that for continual learning to have real-world applicability, the research community cannot ignore the resources used by these algorithms. There is more to continual learning than mitigating catastrophic forgetting. 
    more » « less