West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vectorCulex tarsalisis also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells andC. tarsalismosquitoes. The titres of both WNV strains – WN02-1956 and NY99 – were suppressed by EILV in C6/36 cells as early as 48–72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. InC. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes,EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, inC. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains. 
                        more » 
                        « less   
                    
                            
                            Alpha‐mannosidase‐2 modulates arbovirus infection in a pathogen‐ and Wolbachia ‐specific manner in Aedes aegypti mosquitoes
                        
                    
    
            Abstract MultipleWolbachiastrains can block pathogen infection, replication and/or transmission inAedes aegyptimosquitoes under both laboratory and field conditions. However,Wolbachiaeffects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in whichWolbachiagoverns pathogen transmission phenotypes; rather, the genetics of the host can significantly modulateWolbachia‐mediated pathogen blocking. Specifically, previous work linked variation inWolbachiapathogen blocking to polymorphisms in the mosquito alpha‐mannosidase‐2 (αMan2) gene. Here we use CRISPR‐Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on bothWolbachiaand virus levels, using dengue virus (DENV;Flaviviridae) and Mayaro virus (MAYV;Togaviridae).Wolbachiatitres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. InWolbachia‐uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in aWolbachia‐infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication inWolbachia‐uninfected mosquitoes and did not affectWolbachia‐mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection inA. aegyptimosquitoes in a pathogen‐ andWolbachia‐specific manner, and thatWolbachia‐mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use ofWolbachia‐based strategies to control vector‐borne pathogens. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1645331
- PAR ID:
- 10521983
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Insect Molecular Biology
- Volume:
- 33
- Issue:
- 4
- ISSN:
- 0962-1075
- Format(s):
- Medium: X Size: p. 362-371
- Size(s):
- p. 362-371
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Heise, Mark T. (Ed.)ABSTRACT Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV’s host competence and tissue tropism in five mosquito species: Aedes aegypti , Culex tarsalis , Anopheles gambiae , Anopheles stephensi , and Anopheles albimanus . Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host ( Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis —a vector of harmful human pathogens, including West Nile virus—is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission—a crucial step in discerning how Eilat virus maintains itself in nature.more » « less
- 
            Vernick, Kenneth D (Ed.)Avian malaria is expanding upslope with warmer temperatures and driving multiple species of Hawaiian birds towards extinction. Methods to reduce malaria transmission are urgently needed to prevent further declines. ReleasingWolbachia-infected incompatible male mosquitoes could suppress mosquito populations and releasingWolbachia-infected female mosquitoes (or both sexes) could reduce pathogen transmission if theWolbachiastrain reduced vector competence. We clearedCulex quinquefasciatusof their naturalWolbachia pipientis wPip infection and transinfected them withWolbachia wAlbB isolated fromAedes albopictus. We show thatwAlbB infection was transmitted transovarially, and demonstrate cytoplasmic incompatibility with wild-type mosquitoes infected withwPip from Oahu and Maui, Hawaii. We measured vector competence for avian malaria,Plasmodium relictum, lineage GRW4, of seven mosquito lines (two withwAlbB; three with naturalwPip infection, and two cleared ofWolbachiainfection) by allowing them to feed on canaries infected with recently collected field isolates of HawaiianP.relictum. We tested 73 groups (Ntotal= 1176) of mosquitoes forP.relictuminfection in abdomens and thoraxes 6–14 days after feeding on a range of parasitemias from 0.028% to 2.49%, as well as a smaller subset of salivary glands. We found no measurable effect ofWolbachiaon any endpoint, but strong effects of parasitemia, days post feeding, and mosquito strain on both abdomen and thorax infection prevalence. These results suggest that releasing malewAlbB-infectedC.quinquefasciatusmosquitoes could suppresswPip-infected mosquito populations, but would have little positive or negative impact on mosquito vector competence forP.relictumifwAlbB became established in local mosquito populations. More broadly, the lack ofWolbachiaeffects on vector competence we observed highlights the variable impacts of both native and transinfectedWolbachiainfections in mosquitoes.more » « less
- 
            ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus.more » « less
- 
            de_Oliveira, Mozaniel Santana (Ed.)Mycolactone is a cytotoxic lipid metabolite produced byMycobacterium ulcerans, the environmental pathogen responsible for Buruli ulcer, a neglected tropical disease.Mycobacterium ulceransis prevalent in West Africa, particularly found in lentic environments, where mosquitoes also occur. Researchers hypothesize mosquitoes could serve as a transmission mechanism resulting in infection byM.ulceranswhen mosquitoes pierce skin contaminated withM.ulcerans. The interplay between the pathogen, mycolactone, and mosquito is only just beginning to be explored. A triple-choice assay was conducted to determine the host-seeking preference ofAedes aegyptibetweenM.ulceranswildtype (MU, mycolactone active) and mutant (MUlac-, mycolactone inactive). Both qualitative and quantitative differences in volatile organic compounds’ (VOCs) profiles of MU and MUlac-were determined by GC-MS. Additionally, we evaluated the interplay betweenAe.aegyptiproximity andM.ulceransmRNA expression. The results showed that mosquito attraction was significantly greater (126.0%) to an artificial host treated with MU than MUlac-. We found that MU and MUlacproduced differential profiles of VOCs associated with a wide range of biological importance from quorum sensing (QS) to human odor components. RT-qPCR assays showed that mycolactone upregulation was 24-fold greater for MU exposed toAe.aegyptiin direct proximity. Transcriptome data indicated significant induction of ten chromosomal genes of MU involved in stress responses and membrane protein, compared to MUlac-when directly having access to or in near mosquito proximity. Our study provides evidence of possible interkingdom interactions between unicellular and multicellular species that MU present on human skin is capable of interreacting with unrelated species (i.e., mosquitoes), altering its gene expression when mosquitoes are in direct contact or proximity, potentially impacting the production of its VOCs, and consequently leading to the stronger attraction of mosquitoes toward human hosts. This study elucidates interkingdom interactions between viableM.ulceransbacteria andAe.aegyptimosquitoes, which rarely have been explored in the past. Our finding opens new doors for future research in terms of disease ecology, prevalence, and pathogen dispersal outside of theM.ulceranssystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
