Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.
more »
« less
Modeled Flooding by Tsunamis and a Storm Versus Observed Extent of Coral Erratics on Anegada, British Virgin Islands—Further Evidence for a Great Caribbean Earthquake Six Centuries Ago
Abstract Models of near‐field tsunamis and an extreme hurricane provide further evidence for a great precolonial earthquake along the Puerto Rico Trench. The models are benchmarked to brain‐coral boulders and cobbles on Anegada, 125 km south of the trench. The models are screened by their success in flooding the mapped sites of these erratics, which were emplaced some six centuries ago. Among 25 tsunami scenarios, 19 have megathrust sources and the rest posit normal faulting on the outer rise. The modeled storm, the most extreme of 15 hurricanes of category 5, produces tsunami‐like bores from surf beat. In the tsunami scenarios, simulated flow depth is 1 m or more at all the clast sites, and 2 m or more at nearly all, given either a megathrust rupture 255 km long with 7.5 m of dip slip and M8.45, or an outer‐rise rupture 130 km long with 11.4 m of dip slip and M8.17. By contrast, many coral clasts lie beyond the reach of simulated flooding from the extreme hurricane. The tsunami screening may underestimate earthquake size by neglecting trees and shrubs that likely impeded both the simulated flows and the observed clasts; and it may overestimate earthquake size by leaving coastal sand barriers intact. The screening results broadly agree with those from previously published tsunami simulations. In either successful scenario, the average recurrence interval spans thousands of years, and flooding on the nearest Caribbean shores begins within a half‐hour.
more »
« less
- Award ID(s):
- 2103713
- PAR ID:
- 10522058
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 129
- Issue:
- 3
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture.more » « less
-
Abstract On 19 September 2022, a major earthquake struck the northwestern Michoacán segment along the Mexican subduction zone. A slip model is obtained that satisfactorily explains geodetic, teleseismic, and tsunami observations of the 2022 event. The preferred model has a compact large-slip patch that extends up-dip and northwestward from the hypocenter and directly overlaps a 1973 Mw 7.6 rupture. Slip is concentrated offshore and below the coast at depths from 10 to 30 km with a peak value of ∼2.9 m, and there is no detected coseismic slip near the trench. The total seismic moment is 3.1×1020 N·m (Mw 7.6), 72% of which is concentrated in the first 30 s. Most aftershocks are distributed in an up-dip area of the mainshock that has small coseismic slip, suggesting near-complete strain release in the large-slip patch. Teleseismic P waveforms of the 2022 and 1973 earthquakes are similar in duration and complexity with high cross-correlation coefficients of 0.68–0.98 for long P to PP signal time windows, indicating that the 2022 earthquake is a quasi-repeat of the 1973 earthquake, possibly indicating persistent frictional properties. Both the events produced more complex P waveforms than comparable size events along Guerrero and Oaxaca, reflecting differences in patchy locking of the Mexican megathrust.more » « less
-
Abstract Detailed imaging of accretionary wedges reveals splay fault networks that could pose a significant tsunami hazard. However, the dynamics of multiple splay fault activation during megathrust earthquakes and the consequent effects on tsunami generation are not well understood. We use a 2‐D dynamic rupture model with complex topo‐bathymetry and six curved splay fault geometries constrained from realistic tectonic loading modeled by a geodynamic seismic cycle model with consistent initial stress and strength conditions. We find that all splay faults rupture coseismically. While the largest splay fault slips due to a complex rupture branching process from the megathrust, all other splay faults are activated either top down or bottom up by dynamic stress transfer induced by trapped seismic waves. We ascribe these differences to local non‐optimal fault orientations and variable along‐dip strength excess. Generally, rupture on splay faults is facilitated by their favorable stress orientations and low strength excess as a result of high pore‐fluid pressures. The ensuing tsunami modeled with non‐linear 1‐D shallow water equations consists of one high‐amplitude crest related to rupture on the longest splay fault and a second broader wave packet resulting from slip on the other faults. This results in two episodes of flooding and a larger run‐up distance than the single long‐wavelength (300 km) tsunami sourced by the megathrust‐only rupture. Since splay fault activation is determined by both variable stress and strength conditions and dynamic activation, considering both tectonic and earthquake processes is relevant for understanding tsunamigenesis.more » « less
-
Abstract The La Crucecita earthquake ruptured on the megathrust, generating strong shaking and a modest but long-lived tsunami. This is a significant earthquake that illuminates important aspects of the behavior of the megathrust as well as the potential related hazards. The rupture is contained within 15–30 km depth, ground motions are elevated, and the energy to moment ratio is high. We argue that it represents a deep megathrust earthquake, the 30 km depth is the down-dip edge of slip. The inversion is well constrained, ruling out any shallow slip. It is the narrow seismogenic width and the configuration of the coastline that allow for deformation to occur offshore. The minor tsunamigenesis can be accounted for by the deep slip patch. There is a significant uplift at the coast above it, which leads to negative maximum tsunami amplitudes. Finally, tide-gauge recordings show that edge-wave modes were excited and produce larger amplitudes and durations in the Gulf of Tehuantepec.more » « less
An official website of the United States government

