Neuromuscular injuries can impair hand function and profoundly impacting the quality of life. This has motivated the development of advanced assistive robotic hands. However, the current neural decoder systems are limited in their ability to provide dexterous control of these robotic hands. In this study, we propose a novel method for predicting the extension and flexion force of three individual fingers concurrently using high-density electromyogram (HD-EMG) signals. Our method employs two deep forest models, the flexor decoder and the extensor decoder, to extract relevant representations from the EMG amplitude features. The outputs of the two decoders are integrated through linear regression to predict the forces of the three fingers. The proposed method was evaluated on data from three subjects and the results showed that it consistently outperforms the conventional EMG amplitude-based approach in terms of prediction error and robustness across both target and non-target fingers. This work presents a promising neural decoding approach for intuitive and dexterous control of the fingertip forces of assistive robotic hands.
more »
« less
Multichannel Sensorimotor Integration with a Dexterous Artificial Hand
People use their hands for intricate tasks like playing musical instruments, employing myriad touch sensations to inform motor control. In contrast, current prosthetic hands lack comprehensive haptic feedback and exhibit rudimentary multitasking functionality. Limited research has explored the potential of upper limb amputees to feel, perceive, and respond to multiple channels of simultaneously activated haptic feedback to concurrently control the individual fingers of dexterous prosthetic hands. This study introduces a novel control architecture for three amputees and nine additional subjects to concurrently control individual fingers of an artificial hand using two channels of context-specific haptic feedback. Artificial neural networks (ANNs) recognize subjects’ electromyogram (EMG) patterns governing the artificial hand controller. ANNs also classify the directions objects slip across tactile sensors on the robotic fingertips, which are encoded via the vibration frequency of wearable vibrotactile actuators. Subjects implement control strategies with each finger simultaneously to prevent or permit slip as desired, achieving a 94.49% ± 8.79% overall success rate. Although no statistically significant difference exists between amputees’ and non-amputees’ success rates, amputees require more time to respond to simultaneous haptic feedback signals, suggesting a higher cognitive load. Nevertheless, amputees can accurately interpret multiple channels of nuanced haptic feedback to concurrently control individual robotic fingers, addressing the challenge of multitasking with dexterous prosthetic hands.
more »
« less
- Award ID(s):
- 2205205
- PAR ID:
- 10522103
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Robotics
- Volume:
- 13
- Issue:
- 7
- ISSN:
- 2218-6581
- Page Range / eLocation ID:
- 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner.more » « less
-
Objective: Robust neural decoding of intended motor output is crucial to enable intuitive control of assistive devices, such as robotic hands, to perform daily tasks. Few existing neural decoders can predict kinetic and kinematic variables simultaneously. The current study developed a continuous neural decoding approach that can concurrently predict fingertip forces and joint angles of multiple fingers. Methods: We obtained motoneuron firing activities by decomposing high-density electromyogram (HD EMG) signals of the extrinsic finger muscles. The identified motoneurons were first grouped and then refined specific to each finger (index or middle) and task (finger force and dynamic movement) combination. The refined motoneuron groups (separate matrix) were then applied directly to new EMG data in real-time involving both finger force and dynamic movement tasks produced by both fingers. EMG-amplitude-based prediction was also performed as a comparison. Results: We found that the newly developed decoding approach outperformed the EMG-amplitude method for both finger force and joint angle estimations with a lower prediction error (Force: 3.47±0.43 vs 6.64±0.69% MVC, Joint Angle: 5.40±0.50° vs 12.8±0.65°) and a higher correlation (Force: 0.75±0.02 vs 0.66±0.05, Joint Angle: 0.94±0.01 vs 0.5±0.05) between the estimated and recorded motor output. The performance was also consistent for both fingers. Conclusion: The developed neural decoding algorithm allowed us to accurately and concurrently predict finger forces and joint angles of multiple fingers in real-time. Significance: Our approach can enable intuitive interactions with assistive robotic hands, and allow the performance of dexterous hand skills involving both force control tasks and dynamic movement control tasks.more » « less
-
null (Ed.)With the development of advanced robotic hands, a reliable neural-machine interface is essential to take full advantage of the functional dexterity of the robots. In this preliminary study, we developed a novel method to estimate isometric forces of individual fingers continuously and concurrently during dexterous finger flexion and extension. Specifically, motor unit (MU) discharge activity was extracted from the surface high-density electromyogram (EMG) signals recorded from the finger extensors and flexors, respectively. The MU information was separated into different groups to be associated with the flexion or extension of individual fingers and was then used to predict individual finger forces during multi-finger flexion and extension tasks. Compared with the conventional EMG amplitude-based method, our method can obtain a better force estimation performance (a higher correlation and a smaller estimation error between the predicted and the measured force) when a linear regression model was used. Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands.more » « less
-
null (Ed.)Objective: A reliable neural-machine interface offers the possibility of controlling advanced robotic hands with high dexterity. The objective of this study was to develop a decoding method to estimate flexion and extension forces of individual fingers concurrently. Methods: First, motor units (MUs) firing information were identified through surface electromyogram (EMG) decomposition, and the MUs were further categorized into different pools for the flexion and extension of individual fingers via a refinement procedure. MU firing rate at the populational level was calculated, and the individual finger forces were then estimated via a bivariate linear regression model (neural-drive method). Conventional EMG amplitude-based method was used as a comparison. Results: Our results showed that the neural-drive method had a significantly better performance (lower estimation error and higher correlation) compared with the conventional method. Conclusion: Our approach provides a reliable neural decoding method for dexterous finger movements. Significance: Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands.more » « less
An official website of the United States government

