skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability
Electrochemical sensors have become a pivotal tool in ensuring the safety and security of the global food supply chain, which is crucial for public health, economic stability, and environmental sustainability. Modern food systems, with their complex global distribution and varied processing methods, require advanced solutions for detecting contaminants and maintaining food quality. This review delves into recent advancements in electrochemical food sensor technology, highlighting their operating principles, types, cutting-edge materials, and methods enhancing their effectiveness. These sensors are adept at identifying a broad range of foodborne pathogens, chemical contaminants, and adulterants while monitoring food freshness and quality. Innovations include using nanomaterials and conductive polymers and shifting towards miniaturized, portable devices for on-site and real-time analysis. The review also addresses challenges such as sensitivity, selectivity, and matrix effects, pointing out emerging trends and future research avenues to overcome these hurdles. Regulatory and standardization issues relevant to adopting these technologies in food safety protocols are also considered. Highlighting the last three years, this review emphasizes the indispensable role of electrochemical sensors in boosting food safety and security and the need for ongoing innovation and cross-disciplinary cooperation to advance this area.  more » « less
Award ID(s):
2122195
PAR ID:
10522156
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ECS Sensors Plus
Date Published:
Journal Name:
ECS Sensors Plus
Volume:
3
Issue:
2
ISSN:
2754-2726
Page Range / eLocation ID:
020605
Subject(s) / Keyword(s):
Electrochemical sensors are key for food safety, impacting health and the environment. Advances include nanomaterials and portable devices for real-time analysis. Food sensors detect contaminants and ensure quality, tackling food system challenges. Challenges in sensitivity and selectivity are highlighted for future research. The importance of regulations and standardization in food sensor adoption is stressed.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life. 
    more » « less
  2. Microbial foodborne pathogens present significant challenges to public health and the food industry, requiring rapid and accurate detection methods to prevent infections and ensure food safety. Conventional single biosensing techniques often exhibit limitations in terms of sensitivity, specificity, and rapidity. In response, there has been a growing interest in multimodal biosensing approaches that combine multiple sensing techniques to enhance the efficacy, accuracy, and precision in detecting these pathogens. This review investigates the current state of multimodal biosensing technologies and their potential applications within the food industry. Various multimodal biosensing platforms, such as opto-electrochemical, optical nanomaterial, multiple nanomaterial-based systems, hybrid biosensing microfluidics, and microfabrication techniques are discussed. The review provides an in-depth analysis of the advantages, challenges, and future prospects of multimodal biosensing for foodborne pathogens, emphasizing its transformative potential for food safety and public health. This comprehensive analysis aims to contribute to the development of innovative strategies for combating foodborne infections and ensuring the reliability of the global food supply chain. 
    more » « less
  3. The food industry is one of the most regulated businesses in the world and follows strict internal and regulated requirements to ensure product reliability and safety. In particular, the industry must ensure that biological, chemical, and physical hazards are controlled from the production and distribution of raw materials to the consumption of the finished product. In the United States, the FDA regulates the efficacy and safety of food ingredients and packaging. Traditional packaging materials such as paper, aluminum, plastic, and biodegradable compostable materials have gradually evolved. Coatings made with nanotechnology promise to radically improve the performance of food packaging materials, as their excellent properties improve the appearance, taste, texture, and shelf life of food. This review article highlights the role of nanomaterials in designing and manufacturing anti-fouling and antimicrobial coatings for the food packaging industry. The use of nanotechnology coatings as protective films and sensors to indicate food quality levels is discussed. In addition, their assessment of regulatory and environmental sustainability is developed. This review provides a comprehensive perspective on nanotechnology coatings that can ensure high-quality nutrition at all stages of the food chain, including food packaging systems for humanitarian purposes. 
    more » « less
  4. Abstract At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering. 
    more » « less
  5. Abstract Cell culture encompasses procedures for extracting cells from their natural tissue and cultivating them under controlled artificial conditions. During this process, various factors, including cell physiological/morphological properties, culture environments, metabolites, and contaminants, have to be precisely controlled and monitored for the survival of cells and the pursuit of the desired properties of the cells. This review summarizes recent advances in sensor technologies and manufacturing strategies for various cell culture platforms using traditional plastics, microfluidic chips, and scalable bioreactors. We share the details of newly developed biological sensors, chemical sensors, optical sensors, electronic chip technologies, and material integration methods. The precise control of parameters based on the feedback by these sensors and electronics enhances cell culture quality and throughput. 
    more » « less