Organic–inorganic halide perovskites are intrinsically unstable when exposed to moisture and/or light. Additionally, the presence of lead in many perovskites raises toxicity concerns. Herein, a thin film of barium zirconium sulfide (BaZrS3), a lead‐free chalcogenide perovskite, is reported. Photoluminescence and X‐ray diffraction measurements show that BaZrS3is far more stable than methylammonium lead iodide (MAPbI3) in moist environments. Moisture‐ and light‐induced degradations in BaZrS3and MAPbI3are compared by using simulations and calculations based on density functional theory. The simulations reveal drastically slower degradation in BaZrS3due to two factors—weak interaction with water and very low rates of ion migration. BaZrS3photodetecting devices with photoresponsivity of ≈46.5 mA W−1are also reported. The devices retain ≈60% of their initial photoresponse after 4 weeks under ambient conditions. Similar MAPbI3devices degrade rapidly and show a ≈95% decrease in photoresponsivity in just 4 days. The findings establish the superior stability of BaZrS3and strengthen the case for its use in optoelectronics. New possibilities for thermoelectric energy conversion using these materials are also demonstrated.
Piezoelectric materials show potential to harvest the ubiquitous, abundant, and renewable energy associated with mechanical vibrations. However, the best performing piezoelectric materials typically contain lead which is a carcinogen. Such lead-containing materials are hazardous and are being increasingly curtailed by environmental regulations. In this study, we report that the lead-free chalcogenide perovskite family of materials exhibits piezoelectricity. First-principles calculations indicate that even though these materials are centrosymmetric, they are readily polarizable when deformed. The reason for this is shown to be a loosely packed unit cell, containing a significant volume of vacant space. This allows for an extended displacement of the ions, enabling symmetry reduction, and resulting in an enhanced displacement-mediated dipole moment. Piezoresponse force microscopy performed on BaZrS3confirmed that the material is piezoelectric. Composites of BaZrS3particles dispersed in polycaprolactone were developed to harvest energy from human body motion for the purposes of powering electrochemical and electronic devices.
more » « less- PAR ID:
- 10522175
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead‐free piezoelectric polymorph of SrHfO3. First‐principles calculations predict that the previous experimentally unrealized, metastable P4
mm phase of SrHfO3should exhibit a direct piezoelectric response (d33) of 36.9 pC N−1(compared tod 33= 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3on SrTiO3. The films are structurally consistent with the theory predictions. A ferroelectric‐induced large signal effective converse piezoelectric response of 5.2 pm V−1for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory‐experimental approach to the discovery and realization of new multifunctional polymorphs. -
Abstract Key solutions for material selection, processing, and performance of environmentally friendly high‐power generators are addressed. High voltage and high power generation of flexible devices using piezoelectric Bi0.5(Na0.78K0.22)TiO3nanoparticle filler–polydimethylsiloxane (PDMS) elastomeric matrix for a lead‐free piezoelectric composite film on a cellulose paper substrate is demonstrated. To elucidate the principle of power generation by the piezoelectric composite configuration, the dielectric and piezoelectric characteristics of the composite film are investigated and the results are compared with those of theoretical modeling. The paper‐based composite generator produces a large output voltage of ≈100 V and an average current of ≈20 µA (max. ≈30 µA) through tapping stimulation, which is a record‐high performance compared to previously reported flexible lead‐free piezoelectric composite energy harvesters. Moreover, a triboelectric‐hybridized piezoelectric composite device using a micro‐patterned PDMS shows a much higher output voltage of ≈250 V and output power of ≈0.5 mW, which drives 300 light‐emitting diodes. These results prove that a new class of paper‐based and lead‐free energy harvesting device provides a strong possibility for enlarging the functionality and the capability of high‐power scavengers in flexible and wearable electronics such as sensors and medical devices.
-
Abstract Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice‐versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (
d 33) close to 2000 pC N–1, which combines single crystal‐like high properties and ceramic‐like cost effectiveness, large‐scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase‐field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC‐textured and Eu3+‐doped Pb(Mg1/3Nb2/3)O3‐PbTiO3(PMN‐PT) ceramics that exhibit the highest piezoelectric coefficient (small‐signald 33of up to 1950 pC N–1and large‐signald 33* of ≈2100 pm V–1) among all the reported piezoelectric ceramics. Extensive characterization conducted using high‐resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost‐effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications. -
Abstract Photoacoustic spectroscopy (PAS) is a boomingly developed spectroscopic method for trace gas analysis in the past decades. Unlike traditional laser absorption spectroscopy, an acoustic transducer is employed to detect the acoustic waves instead of optical waves. Microphone is a commonly used transducer to convert the acoustic signal into electrical signal, which is related to the gas concentration. In recent years, piezoelectric materials are playing important roles in the acoustic‐to‐electrical conversion process of photoacoustic system. In this article, recently used transducers in PAS such as quartz tuning fork, polyvinylidene fluoride, lead zirconate titanate, electromechanical film and LiNbO3, BiB3O6, NbCOB crystals are summarized and discussed in detail. The different spectrophone configuration, schematic diagram, and experimental system are reported. Side by side comparison is carried out to show the gas sensing performance of these piezoelectric transducers.