Abstract We present rest-frame optical emission-line flux ratio measurements for fivez> 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelativeflux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolutespectrophotometry of the current version of the reductions. Compared toz∼ 3 galaxies in the literature, thez> 5 galaxies have similar [Oiii]λ5008/Hβratios, similar [Oiii]λ4364/Hγratios, and higher (∼0.5 dex) [NeIII]λ3870/[OII]λ3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII]λ3870/[OII]λ3728, [Oiii]λ4364/Hγ, and [Oiii]λ5008/Hβemission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z/Z⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii]λ4364/Hγand [Oiii]λ(4960 + 5008)/Hβline ratios indicate very high electron temperatures of , further implying metallicities ofZ/Z⊙≲ 0.2 with the application of low-redshift calibrations for “Te-based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn.
more »
« less
A Comprehensive Metallicity Analysis of J0332−3557: Establishing a z ∼ 4 Anchor for Direct Gas Metallicity and C/O Abundance Investigations
Abstract We provide one of the most comprehensive metallicity studies atz∼ 4 by analyzing the UV/optical Hubble Space Telescope photometry and rest-frame Very Large Telescope (VLT)/FORS2 UV and VLT/XSHOOTER optical spectra of J0332−3557, a gravitationally lensed galaxy magnified by a factor of 20. With a 5σdetection of the auroral Oiii]λ1666 line, we are able to derive a direct gas metallicity estimate for our target. We findZgas , which is compatible with an increase of both the gas fraction and the outflow metal loading factor fromz∼ 0 toz∼ 4. J0332−3557 is the most metal-rich individual galaxy atz∼ 4 for which the C/O ratio has been measured. We derive a low log(C/O) = −1.02 ± 0.2, which suggests that J0332−3557 is in the early stages of interstellar medium carbon enrichment driven mostly by massive stars. The low C/O abundance also indicates that J0332−3557 is characterized by a low star formation efficiency, higher yields of oxygen, and longer burst duration. We find that EWCIII]1906,9is as low as ∼3 Å, and the main drivers of the low EWCIII]1906,9are the higher gas metallicity and the low C/O abundance. J0332−3557 is characterized by one diffuse and two more compact regions ∼1 kpc in size. We find that the carbon emission mostly originates in the compact knots. Our study on J0332−3557 serves as an anchor for studies investigating the evolution of metallicity and C/O abundance across different redshifts.
more »
« less
- PAR ID:
- 10522190
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 969
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 148
- Size(s):
- Article No. 148
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Early JWST photometric studies discovered a population of UV-faint ( )z ∼ 6.5–8 Lyman break galaxies with spectral energy distributions implying young ages (∼10 Myr) yet relatively weak Hβ+ [Oiii] equivalent widths (EWHβ+ [Oiii] ≈ 400 Å). These galaxies seemingly contradict the implicit understanding that young star-forming galaxies are ubiquitously strong Hβ+ [Oiii] emitters, i.e., extreme emission line galaxies (EW ≳750 Å). Low metallicities, high Lyman continuum escape fractions, and rapidly declining star formation histories have been proposed as primary drivers behind low Hβ+ [Oiii] EWs, but the blend of Hβ+ [Oiii] in photometric studies makes proving one of these scenarios difficult. We aim to characterize this peculiar population with deep spectroscopy from the JWST Advanced Deep Extragalactic Survey. We find that a significant subset of these galaxies atz ≳ 2 with modest Hβ+ [Oiii] EWs (≈300–600 Å) have high ionization efficiencies ( ). Suppressed [Oiii] EW values yet elevated Hαand HβEW values imply that the level of chemical enrichment is the primary culprit, supported by spectroscopic measurements of metallicities below 12 + log(O/H) ≈ 7.70 (0.1Z⊙). We demonstrate that integrated Hβ+ [Oiii] selections (e.g., Hβ+ [Oiii] EW > 700 Å) exclude the most metal-poor efficient ionizers and favor (1) more chemically enriched systems with comparable extreme radiation fields and (2) older starbursting systems. In contrast, metallicity degeneracies are reduced in Hαspace, enabling the identification of these metal-poor efficient ionizers by their specific star formation rate.more » « less
-
Abstract Core-collapse supernovae (CCSNe) are widely accepted to be caused by the explosive death of massive stars with initial masses ≳8M⊙. There is, however, a comparatively poor understanding of how properties of the progenitors—mass, metallicity, multiplicity, rotation, etc.—manifest in the resultant CCSN population. Here, we present a minimally biased sample of nearby CCSNe from the All-Sky Automated Survey for Supernovae survey whose host galaxies were observed with integral-field spectroscopy using MUSE at the Very Large Telescope. This data set allows us to analyze the explosion sites of CCSNe within the context of global star formation properties across the host galaxies. We show that the CCSN explosion site oxygen abundance distribution is offset to lower values than the overall Hiiregion abundance distribution within the host galaxies. We further split the sample at dex and show that within the subsample of low-metallicity host galaxies, the CCSNe unbiasedly trace the star formation with respect to oxygen abundance, while for the subsample of higher-metallicity host galaxies, they preferentially occur in lower-abundance star-forming regions. We estimate the occurrence of CCSNe as a function of oxygen abundance per unit star formation and show that there is a strong decrease as abundance increases. Such a strong and quantified metallicity dependence on CCSN production has not been shown before. Finally, we discuss possible explanations for our result and show that each of these has strong implications not only for our understanding of CCSNe and massive star evolution but also for star formation and galaxy evolution.more » « less
-
Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at , a moderately lensed galaxy ( ) with an intrinsic UV magnitude of . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z⊙ < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M⊙. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before.more » « less
-
Abstract Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way–mass progenitors in the redshift range of 0.4 <z< 3. We pay special attention to the occurrence of positive (i.e., inverted) metallicity gradients—where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The rate of occurrence of positive gradients in FIRE-2 is about ∼7% for 0.4 <z< 3 and ∼13% at higher redshifts (1.5 <z< 3), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Metallicity gradients show a strong correlation with both sSFR and the rotational-to-dispersion velocity ratio (vc/σ), implying that starbursts and kinematic morphology of galaxies play significant roles in shaping these gradients. The FIRE-2 simulations indicate that galaxies with high sSFR ( ) and weak rotational support (vc/σ≲ 1) are more likely—by ∼15%—to develop positive metallicity gradients. This trend is attributed to galaxy-scale gas flows driven by stellar feedback, which effectively redistribute metals within the interstellar medium. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way–mass galaxies at the cosmic noon epoch.more » « less
An official website of the United States government
