skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Notes on a surface defect in the O(N) model
A<sc>bstract</sc> We study a surface defect in the free and criticalO(N) vector models, defined by adding a quadratic perturbation localized on a two-dimensional subspace of thed-dimensional CFT. We compute the beta function for the corresponding defect renormalization group (RG) flow, and provide evidence that at long distances the system flows to a nontrivial defect conformal field theory (DCFT). We use epsilon and largeNexpansions to compute several physical quantities in the DCFT, finding agreement across different expansion methods. We also compute the defect free energy, and check consistency with the so-calledb-theorem for RG flows on surface defects.  more » « less
Award ID(s):
2209997
PAR ID:
10522235
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We study line defects in the fermionic CFTs in the Gross-Neveu-Yukawa universality class in dimensions 2< d <4. These CFTs may be described as the IR fixed points of the Gross-Neveu-Yukawa (GNY) model ind= 4 −ϵ, or as the UV fixed points of the Gross-Neveu (GN) model, which can be studied using the largeNexpansion in 2< d <4. These models admit natural line defects obtained by integrating over a line either the scalar field in the GNY description, or the fermion bilinear operator in the GN description. We compute the beta function for the defect RG flow using both the epsilon expansion and the largeNapproach, and find IR stable fixed points for the defect coupling, thus providing evidence for a non-trivial IR DCFT. We also compute some of the DCFT observables at the fixed point, and check that theg-function associated with the circular defect is consistent with theg-theorem for the defect RG flow. 
    more » « less
  2. A<sc>bstract</sc> We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikovc-theorem, and derive further independent constraints along the flow. In particular, we identify a naturalC-function that is a completely monotonic function of scale, meaning its derivatives satisfy the alternating inequalities (–1)nC(n)2) ≥ 0. The completely monotonicC-function is identical to the ZamolodchikovC-function at the endpoints, but differs along the RG flow. In addition, we apply Lorentzian techniques that we developed recently to study anomalies and RG flows in four dimensions, and show that the Zamolodchikovc-theorem can be restated as a Lorentzian sum rule relating the change in the central charge to the average null energy. This establishes that the ANEC implies thec-theorem in two dimensions, and provides a second, simpler example of the Lorentzian sum rule. 
    more » « less
  3. A<sc>bstract</sc> We study anO(N) invariant surface defect in the Wilson-Fisher conformal field theory (CFT) ind= 4 –ϵdimensions. This defect is defined by mass deformation on a two-dimensional surface that generates localized disorder and is conjectured to factorize into a pair of ordinary boundary conditions ind= 3. We determine defect CFT data associated with the lightestO(N) singlet and vector operators up to the third order in theϵ-expansion, find agreements with results from numerical methods and provide support for the factorization proposal ind= 3. Along the way, we observe surprising non-renormalization properties for surface anomalous dimensions and operator-product-expansion coefficients in theϵ-expansion. We also analyze the full conformal anomalies for the surface defect. 
    more » « less
  4. A<sc>bstract</sc> We use the radial null energy condition to construct a monotonica-function for a certain type of non-relativistic holographic RG flows. We test oura-function in three different geometries that feature a Boomerang RG flow, characterized by a domain wall between two AdS spaces with the same AdS radius, but with different (and sometimes direction-dependent) speeds of light. We find that thea-function monotonically decreases and goes to a constant in the asymptotic regimes of the geometry. Using the holographic dictionary in this asymptotic AdS spaces, we find that thea-function not only reads the fixed point central charge but also the speed of light, suggesting what the correct RG charge might be for non-relativistic RG flows. 
    more » « less
  5. Abstract The generalized Wilson loop operator interpolating between the supersymmetric and the ordinary Wilson loop in N = 4 SYM theory provides an interesting example of renormalization group flow on a line defect: the scalar coupling parameterζhas a non-trivial beta function and may be viewed as a running coupling constant in a 1D defect QFT. In this paper we continue the study of this operator, generalizing previous results for the beta function and Wilson loop expectation value to the case of an arbitrary representation of the gauge group and beyond the planar limit. Focusing on the scalar ladder limit where the generalized Wilson loop reduces to a purely scalar line operator in a free adjoint theory, and specializing to the case of the rankksymmetric representation ofSU(N), we also consider a certain ‘semiclassical’ limit wherekis taken to infinity with the productkζ2fixed. This limit can be conveniently studied using a 1D defect QFT representation in terms ofNcommuting bosons. Using this representation, we compute the beta function and the circular loop expectation value in the largeklimit, and use it to derive constraints on the structure of the beta function for general representation. We discuss the corresponding 1D RG flow and comment on the consistency of the results with the 1D defect version of the F-theorem. 
    more » « less