Abstract It has been proposed that some black holes (BHs) in binary black hole (BBH) systems are born from “hierarchical mergers” (HMs), i.e., earlier mergers of smaller BHs. These HM products have spin magnitudes χ ∼ 0.7, and, if they are dynamically assembled into BBH systems, their spin orientations will sometimes be antialigned with the binary orbital angular momentum. In fact, as Baibhav et al. showed, ∼16% of BBH systems that include HM products will have an effective inspiral spin parameter, χ eff < −0.3. Nevertheless, the LIGO–Virgo–KAGRA (LVK) gravitational-wave (GW) detectors have yet to observe a BBH system with χ eff ≲ −0.2, leading to upper limits on the fraction of HM products in the population. We fit the astrophysical mass and spin distribution of BBH systems and measure the fraction of BBH systems with χ eff < −0.3, which implies an upper limit on the HM fraction. We find that fewer than 26% of systems in the underlying BBH population include HM products (90% credibility). Even among BBH systems with primary masses m 1 = 60 M ⊙ , the HM fraction is less than 69%, which may constrain the location of the pair-instability mass gap. With 300 GW events (to be expected in the LVK’s next observing run), if we fail to observe a BBH with χ eff < −0.3, we can conclude that the HM fraction is smaller than 2.5 − 2.2 + 9.1 % .
more »
« less
This content will become publicly available on April 26, 2025
Spin Doctors: How to Diagnose a Hierarchical Merger Origin
Abstract Gravitational-wave observations provide the unique opportunity of studying black hole formation channels and histories—but only if we can identify their origin. One such formation mechanism is the dynamical synthesis of black hole binaries in dense stellar systems. Given the expected isotropic distribution of component spins of binary black holes in gas-free dynamical environments, the presence of antialigned or in-plane spins with respect to the orbital angular momentum is considered a tell-tale sign of a merger’s dynamical origin. Even in the scenario where birth spins of black holes are low, hierarchical mergers attain large component spins due to the orbital angular momentum of the prior merger. However, measuring such spin configurations is difficult. Here, we quantify the efficacy of the spin parameters encoding aligned-spin (χeff) and in-plane spin (χp) at classifying such hierarchical systems. Using Monte Carlo cluster simulations to generate a realistic distribution of hierarchical merger parameters from globular clusters, we can infer mergers’χeffandχp. The cluster populations are simulated using Advanced LIGO-Virgo sensitivity during the detector network’s third observing period and projections for design sensitivity. Using a “likelihood-ratio”-based statistic, we find that ∼2% of the recovered population by the current gravitational-wave detector network has a statistically significantχpmeasurement, whereas noχeffmeasurement was capable of confidently determining a system to be antialigned with the orbital angular momentum at current detector sensitivities. These results indicate that measuring spin-precession throughχpis a more detectable signature of hierarchical mergers and dynamical formation than antialigned spins.
more »
« less
- Award ID(s):
- 2207945
- PAR ID:
- 10522308
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 966
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50 M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).more » « less
-
Abstract The disks of active galactic nuclei (AGNs) may be important sites of binary black hole (BBH) mergers. Here we show via numerical experiments with the high-accuracy, high-precision code SpaceHub that broken symmetry in dynamical encounters in AGN disks can lead to asymmetry between prograde and retrograde BBH mergers. The direction of the hardening asymmetry depends on the initial binary semimajor axis. Under the assumption that the spin of the BHs becomes aligned with the angular momentum of the disk on a short timescale compared with the encounter timescale, an asymmetric distribution of mass-weighted projected spin χ eff is predicted in LIGO–Virgo detections of BBH mergers from AGN disks. In particular, this model predicts that positive χ eff BBH mergers are most likely for encounters with massive tertiaries in migration traps at radial distances ≳500–600 gravitational radii.more » « less
-
In the post-Newtonian regime, the time it takes two black holes to orbit each other is much shorter than the time it takes their spins and the orbital angular momentum to precess about the direction of the total angular momentum, which in turn is shorter than the orbital decay time. We use the parameters quantifying the component black hole spins in and out of the orbital plane to build an interactive 3D visualization to explore the phenomenology of spin precession over these different time scales.more » « less
-
Binary black holes with misaligned spins will generically induce both precession and nutation of the orbital angular momentum 𝐋 about the total angular momentum 𝐉. These phenomena modulate the phase and amplitude of the gravitational waves emitted as the binary inspirals to merger. We introduce a “taxonomy” of binary black-hole spin precession that encompasses all the known phenomenology, then present five new phenomenological parameters that describe generic precession and constitute potential building blocks for future gravitational waveform models. These are the precession amplitude ⟨𝜃𝐿⟩, the precession frequency ⟨Ω𝐿⟩, the nutation amplitude Δ𝜃𝐿, the nutation frequency 𝜔, and the precession-frequency variation ΔΩ𝐿. We investigate the evolution of these five parameters during the inspiral and explore their statistical properties for sources with isotropic spins. In particular, we find that nutation of 𝐋 is most prominent for binaries with high spins (𝜒≳0.5) and moderate mass ratios (𝑞∼0.6).more » « less