Large language models (LLMs) are increasingly integrated into a variety of writing tasks. While these tools can help people by generating ideas or producing higher quality work, like many other AI tools they may risk causing a variety of harms, disproportionately burdening historically marginalized groups. In this work, we introduce and evaluate perceptual harm, a term for the harm caused to users when others perceive or suspect them of using AI. We examined perceptual harms in three online experiments, each of which entailed human participants evaluating the profiles for fictional freelance writers. We asked participants whether they suspected the freelancers of using AI, the quality of their writing, and whether they should be hired. We found some support for perceptual harms against for certain demographic groups, but that perceptions of AI use negatively impacted writing evaluations and hiring outcomes across the board. 
                        more » 
                        « less   
                    
                            
                            A Watermark for Large Language Models
                        
                    
    
            In this paper, Kirchenbauer et. al. use a novel watermarking technology to watermark the output of large language models (LLMs) like ChatGP, which is often in the form of AI-generated text, and mitigate the harms associated with the increasing usage of these technologies. They note some of the capabilities of these LLM models as writing documents, creating executable code, and answering questions, often with human-like capabilities. In addition, they list some of the harms as social engineering and election manipulation campaigns that exploit automated bots on social media platforms, creation of fake news and web content, and use of AI systems for cheating onacademic writing and coding assignments. As for implications for policy makers, this technology can be utilized as a means to regulate and oversee the use of these LLMs on all public and social fronts where their AI-generated text output could pose a potential harm, such as those listed by the authors. (Methods and Metrics, watermarking LLM output) 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2229885
- PAR ID:
- 10522346
- Publisher / Repository:
- PMLR
- Date Published:
- Format(s):
- Medium: X
- Location:
- Honolulu, HI
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Text watermarks for large language models (LLMs) have been commonly used to identify the origins of machine-generated content, which is promising for assessing liability when combating deepfake or harmful content. While existing watermarking techniques typically prioritize robustness against removal attacks, unfortunately, they are vulnerable to spoofing attacks: malicious actors can subtly alter the meanings of LLM-generated responses or even forge harmful content, potentially misattributing blame to the LLM developer. To overcome this, we introduce a bi-level signature scheme, Bileve, which embeds fine-grained signature bits for integrity checks (mitigating spoofing attacks) as well as a coarse-grained signal to trace text sources when the signature is invalid (enhancing detectability) via a novel rank-based sampling strategy. Compared to conventional watermark detectors that only output binary results, Bileve can differentiate 5 scenarios during detection, reliably tracing text provenance and regulating LLMs. The experiments conducted on OPT-1.3B and LLaMA-7B demonstrate the effectiveness of Bileve in defeating spoofing attacks with enhanced detectability.more » « less
- 
            We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.more » « less
- 
            The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustnessmore » « less
- 
            Introduction: Recent AI advances, particularly the introduction of large language models (LLMs), have expanded the capacity to automate various tasks, including the analysis of text. This capability may be especially helpful in education research, where lack of resources often hampers the ability to perform various kinds of analyses, particularly those requiring a high level of expertise in a domain and/or a large set of textual data. For instance, we recently coded approximately 10,000 state K-12 computer science standards, requiring over 200 hours of work by subject matter experts. If LLMs are capable of completing a task such as this, the savings in human resources would be immense. Research Questions: This study explores two research questions: (1) How do LLMs compare to humans in the performance of an education research task? and (2) What do errors in LLM performance on this task suggest about current LLM capabilities and limitations? Methodology: We used a random sample of state K-12 computer science standards. We compared the output of three LLMs – ChatGPT, Llama, and Claude – to the work of human subject matter experts in coding the relationship between each state standard and a set of national K-12 standards. Specifically, the LLMs and the humans determined whether each state standard was identical to, similar to, based on, or different from the national standards and (if it was not different) which national standard it resembled. Results: Each of the LLMs identified a different national standard than the subject matter expert in about half of instances. When the LLM identified the same standard, it usually categorized the type of relationship (i.e., identical to, similar to, based on) in the same way as the human expert. However, the LLMs sometimes misidentified ‘identical’ standards. Discussion: Our results suggest that LLMs are not currently capable of matching human performance on the task of classifying learning standards. The mis-identification of some state standards as identical to national standards – when they clearly were not – is an interesting error, given that traditional computing technologies can easily identify identical text. Similarly, some of the mismatches between the LLM and human performance indicate clear errors on the part of the LLMs. However, some of the mismatches are difficult to assess, given the ambiguity inherent in this task and the potential for human error. We conclude the paper with recommendations for the use of LLMs in education research based on these findings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    