skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially‐Coded Fourier Ptychography: Flexible and Detachable Coded Thin Films for Quantitative Phase Imaging with Uniform Phase Transfer Characteristics
Abstract Fourier ptychography (FP) is an enabling imaging technique that produces high‐resolution complex‐valued images with extended field coverages. However, when FP images a phase object with any specific spatial frequency, the captured images contain only constant values, rendering the recovery of the corresponding linear phase ramp impossible. This challenge is not unique to FP but also affects other common microscopy techniques — a rather counterintuitive outcome given their widespread use in phase imaging. The underlying issue originates from the non‐uniform phase transfer characteristic inherent in microscope systems, which impedes the conversion of object wavefields into discernible intensity variations. To address this challenge, spatially‐coded Fourier ptychography (scFP) is presented for true quantitative phase imaging. In scFP, a flexible and detachable coded thin film is attached atop the image sensor in a regular FP setup. The spatial modulation of this thin film ensures a uniform phase response across the entire synthetic bandwidth. It improves reconstruction quality, corrects refractive index underestimation issues prevalent in conventional FP, and adds a new dimension of measurement diversity in spatial domain. The development of scFP is expected to catalyze new research directions and applications for phase imaging, emphasizing the need for true quantitative accuracy with uniform frequency response.  more » « less
Award ID(s):
2012140
PAR ID:
10522347
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
12
Issue:
15
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present deep-ultraviolet Fourier ptychography (DUV-FP) for high-resolution chemical imaging of biological specimens in their native state without exogenous stains. This approach uses a customized 265-nm DUV LED array for angle-varied illumination, leveraging the unique DUV absorption properties of biomolecules at this wavelength region. We implemented a robust feature-domain optimization framework to overcome common challenges in Fourier ptychographic reconstruction, including vignetting, pupil aberrations, stray light problems, intensity variations, and other systematic errors. By using a 0.12 numerical aperture low-resolution objective lens, our DUV-FP prototype can resolve the 345-nm linewidth on a resolution target, demonstrating at least a four-fold resolution gain compared to the captured raw images. Testing on various biospecimens demonstrates that DUV-FP significantly enhances absorption-based chemical contrast and reveals detailed structural and molecular information. To further address the limitations of conventional FP in quantitative phase imaging, we developed a spatially coded DUV-FP system. This platform enables true quantitative phase imaging of biospecimens with DUV light, overcoming the non-uniform phase response inherent in traditional microscopy techniques. The demonstrated advancements in high-resolution, label-free chemical imaging may accelerate developments in digital pathology, potentially enabling rapid, on-site analysis of biopsy samples in clinical settings. 
    more » « less
  2. The applications of conventional ptychography are limited by its relatively low resolution and throughput in the visible light regime. The new development of coded ptychography (CP) has addressed these issues and achieved the highest numerical aperture for large-area optical imaging in a lensless configuration. A high-quality reconstruction of CP relies on precise tracking of the coded sensor’s positional shifts. The coded layer on the sensor, however, prevents the use of cross correlation analysis for motion tracking. Here we derive and analyze the motion tracking model of CP. A novel, to the best of our knowledge, remote referencing scheme and its subsequent refinement pipeline are developed for blind image acquisition. By using this approach, we can suppress the correlation peak caused by the coded surface and recover the positional shifts with deep sub-pixel accuracy. In contrast with common positional refinement methods, the reported approach can be disentangled from the iterative phase retrieval process and is computationally efficient. It allows blind image acquisition without motion feedback from the scanning process. It also provides a robust and reliable solution for implementing ptychography with high imaging throughput. We validate this approach by performing high-resolution whole slide imaging of bio-specimens. 
    more » « less
  3. Enhanced susceptibilities in ferroelectrics often arise near phase boundaries between competing ground states. While chemically-induced phase boundaries have enabled ultrahigh electrical and electromechanical responses in lead-based ferroelectrics, precise chemical tuning in lead-free alternatives, such as (K,Na)NbO3 thin films, remains challenging due to the high volatility of alkali metals. Here, we demonstrate strain-induced morphotropic phase boundary-like polymorphic nanodomain structures in chemically simple, lead-free, epitaxial NaNbO3 thin films. Combining ab initio simulations, thin-film epitaxy, scanning probe microscopy, synchrotron X-ray diffraction, and electron ptychography, we reveal a labyrinthine structure comprising coexisting monoclinic and bridging triclinic phases near a strain-induced phase boundary. The coexistence of energetically competing phases facilitates field-driven polarization rotation and phase transitions, giving rise to a multi-state polarization switching pathway and large enhancements in dielectric susceptibility and tunability across a broad frequency range. Our results open new possibilities for engineering lead-free thin films with enhanced functionalities for next-generation applications. 
    more » « less
  4. Abstract To overcome the spatial resolution limit set by aperture-limited diffraction in traditional scanning transmission electron microscopy, microscopists have developed ptychography enabled by iterative phase retrieval algorithms and high-dynamic-range pixel array detectors. Current detector designs are limited by the data rate off chip, so a high-pixel-count detector has a proportionally lower frame rate than the few-segment detectors used for differential phase contrast (DPC) imaging. This slower acquisition speed leads to heightened vulnerability to scan noise, drift, and potential sample damage. This creates opportunities for repurposing fast segmented detectors for ptychography by trading a reduction in reciprocal space pixels for an increase in real space pixels. Here, we explore a strategy of oversampling in real space and instead apply detector pixel upsampling during the reconstruction process. We demonstrate the viability of achieving super-resolution ptychography on thin objects using only 2 × 2 detector pixels, surpassing the resolution of integrated DPC (iDPC) imaging. With optimization using simulated datasets and experiments on MoTe2/WSe2 bilayer moiré superlattices, we achieved super-resolution ptychography reconstructions under rapid acquisition conditions (37.5 pA, 1 μs dwell time), yielding over 50% improvements in contrast and information limit compared to annular dark field and iDPC imaging on the same detectors. 
    more » « less
  5. Single-shot two-dimensional (2D) phase retrieval (PR) can recover the phase shift distribution within an object from a single 2D x-ray phase contrast image (XPCI). Two competing XPCI imaging modalities often used for single-shot 2D PR to recover material properties critical for predictive performance capabilities are: speckle-based (SP-XPCI) and propagation-based (PB-XPCI) XPCI imaging. However, PR from SP-XPCI and PB-XPCI images are, respectively, limited to reconstructing accurately slowly and rapidly varying features due to noise and differences in their contrast mechanisms. Herein, we consider a combined speckle- and propagation-based XPCI (SPB-XPCI) image by introducing a mask to generate a reference pattern and imaging in the near-to-holographic regime to induce intensity modulations in the image. We develop a single-shot 2D PR method for SPB-XPCI images of pure phase objects without imposing restrictions such as object support constraints. It is compared against PR methods inspired by those developed for SP-XPCI and PB-XPCI on simulated and experimental images of a thin glass shell before and during shockwave compression. Reconstructed phase maps show improvements in quantitative scores of root-mean-square error and structural similarity index measure using our proposed method. 
    more » « less