skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Taxonomic and genomic attributes of oligotrophic soil bacteria
Abstract Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum—from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the “slow lane.” However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.  more » « less
Award ID(s):
2126106 2131837 2133684
PAR ID:
10522516
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ISME Communications
Volume:
4
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways. 
    more » « less
  2. Abstract Associations between soil minerals and microbially derived organic matter (often referred to as mineral‐associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non‐rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere–bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non‐random colonization of mineral surfaces by hyphae‐associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals. 
    more » « less
  3. Solanum tuberosum, commonly known as potato, is the most important non-cereal crop in the world. However, its cultivation is prone to disease and other issues. In recent years, a newfound interest in the soil microbiome and the potential benefits it may convey has led researchers to study plant–microbe interactions in great detail and has led to the identification of putative beneficial microbial taxa. In this survey, we examined fungal and bacterial diversity using high-throughput sequencing in soils under a potato crop in southeastern Wyoming, USA. Our results show decreased microbial diversity in the rhizosphere, with increases in the abundances of arbuscular mycorrhizal fungi as well as pathogenic microbes. We show coarse taxonomic differences in microbial assemblages when comparing the bulk and rhizosphere soils for bacteria but not for fungi, suggesting that the two kingdoms respond differently to the selective pressures of the rhizosphere. Using cooccurrence network analysis, we identify microbes that may serve as keystone taxa and provide benefits to their host plants through competitive exclusion of detrimental pathogenic taxa and increased nutrient availability. Our results provide additional information on the structure and complexity of the potato rhizosphere microbiome and highlight candidate taxa for microbial isolation and inoculation. 
    more » « less
  4. Switchgrass (Panicum virgatum L.) remains the preeminent American perennial (C4) bioenergy crop for cellulosic ethanol, that could help displace over a quarter of the US current petroleum consumption. Intriguingly, there is often little response to nitrogen fertilizer once stands are established. The rhizosphere microbiome plays a critical role in nitrogen cycling and overall plant nutrient uptake. We used high-throughput metagenomic sequencing to characterize the switchgrass rhizosphere microbial community before and after a nitrogen fertilization event for established stands on marginal land. We examined community structure and bulk metabolic potential, and resolved 29 individual bacteria genomes via metagenomic de novo assembly. Community structure and diversity were not significantly different before and after fertilization; however, the bulk metabolic potential of carbohydrate-active enzymes was depleted after fertilization. We resolved 29 metagenomic assembled genomes, including some from the ‘most wanted’ soil taxa such as Verrucomicrobia, Candidate phyla UBA10199, Acidobacteria (rare subgroup 23), Dormibacterota, and the very rare Candidatus Eisenbacteria. The Dormibacterota (formally candidate division AD3) we identified have the potential for autotrophic CO utilization, which may impact carbon partitioning and storage. Our study also suggests that the rhizosphere microbiome may be involved in providing associative nitrogen fixation (ANF) via the novel diazotroph Janthinobacterium to switchgrass. 
    more » « less
  5. Abstract Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes). The capacity for flagellar motility was associated with a higher prevalence of genes for carbohydrate metabolism and higher maximum potential growth rates, suggesting that flagellar motility is more prevalent in environments with higher carbon availability. To test this hypothesis, we applied a method to infer the prevalence of flagellar motility in whole bacterial communities from metagenomic data and quantified the prevalence of flagellar motility across four independent field studies that each captured putative gradients in soil carbon availability (148 metagenomes). We observed a positive relationship between the prevalence of bacterial flagellar motility and soil carbon availability in all datasets. Since soil carbon availability is often correlated with other factors that could influence the prevalence of flagellar motility, we validated these observations using metagenomic data from a soil incubation experiment where carbon availability was directly manipulated with glucose amendments. This confirmed that the prevalence of bacterial flagellar motility is consistently associated with soil carbon availability over other potential confounding factors. This work highlights the value of combining predictive genomic and metagenomic approaches to expand our understanding of microbial phenotypic traits and reveal their general environmental associations. 
    more » « less