Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C–I and I–C–I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom.
more »
« less
X-ray induced Coulomb explosion imaging of transient excited-state structural rearrangements in CS2
Abstract Structural imaging of transient excited-state species is a key goal of molecular physics, promising to unveil rich information about the dynamics underpinning photochemical transformations. However, separating the electronic and nuclear contributions to the spectroscopic observables is challenging, and typically requires the application of high-level theory. Here, we employ site-selective ionisation via ultrashort soft X-ray pulses and time-resolved Coulomb explosion imaging to interrogate structural dynamics of the ultraviolet photochemistry of carbon disulfide. This prototypical system exhibits the complex motifs of polyatomic photochemistry, including strong non-adiabatic couplings, vibrational mode couplings, and intersystem crossing. Immediately following photoexcitation, we observe Coulomb explosion signatures of highly bent and stretched excited-state geometries involved in the photodissociation. Aided by a model to interpret such changes, we build a comprehensive picture of the photoinduced nuclear dynamics that follows initial bending and stretching motions, as the reaction proceeds towards photodissociation.
more »
« less
- Award ID(s):
- 2309238
- PAR ID:
- 10522627
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Upon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump–probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers. In particular, the fragmentation channel of 2-propanol associated with the loss of CH 3 shows possible evidence of methyl roaming. Moreover, the electronic structure of this roaming methyl fragment could be responsible for the enhanced ionization also observed for this channel. Finally, comparison with similar studies done on ethanol and acetonitrile helps establish a correlation between the length of the alkyl chain and the likelihood of hydrogen migration.more » « less
-
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.more » « less
-
The bond strength and photodissociation dynamics of MgI+ are determined by a combination of theory, photodissociation spectroscopy, and photofragment velocity map imaging. From 17 000 to 21 500 cm−1, the photodissociation spectrum of MgI+ is broad and unstructured; photofragment images in this region show perpendicular anisotropy, which is consistent with absorption to the repulsive wall of the (1) Ω = 1 or (2) Ω = 1 states followed by direct dissociation to ground state products Mg+ (2S) + I (2P3/2). Analysis of photofragment images taken at photon energies near the threshold gives a bond dissociation energy D0(Mg+-I) = 203.0 ± 1.8 kJ/mol (2.10 ± 0.02 eV; 17 000 ± 150 cm−1). At photon energies of 33 000–41 000 cm−1, exclusively I+ fragments are formed. Over most of this region, the formation of I+ is not energetically allowed via one-photon absorption from the ground state of MgI+. Images show the observed product is due to resonance enhanced two-photon dissociation. The photodissociation spectrum from 33 000 to 38 500 cm−1 shows vibrational structure, giving an average excited state vibrational spacing of 227 cm−1. This is consistent with absorption to the (3) Ω = 0+ state from ν = 0, 1 of the (1) Ω = 0+ ground state; from the (3) Ω = 0+ state, absorption of a second photon results in dissociation to Mg* (3P°J) + I+ (3PJ). From 38 500 to 41 000 cm−1, the spectrum is broad and unstructured. We attribute this region of the spectrum to one-photon dissociation of vibrationally hot MgI+ at low energy and ground state MgI+ at higher energy to form Mg (1S) + I+ (3PJ) products.more » « less
-
null (Ed.)Molecular dynamics simulations often classically evolve the nuclear geometry on adiabatic potential energy surfaces (PESs), punctuated by random hops between energy levels in regions of strong coupling, in an algorithm known as surface hopping. However, the computational expense of integrating the geometry on a full-dimensional PES and computing the required couplings can quickly become prohibitive as the number of atoms increases. In this work, we describe a method for surface hopping that uses only important reaction coordinates, performs all expensive evaluations of the true PESs and couplings only once before simulating dynamics (offline), and then queries the stored values during the surface hopping simulation (online). Our Python codes are freely available on GitHub. Using photodissociation of azomethane as a test case, this method is able to reproduce experimental results that have thus far eluded ab initio surface hopping studies.more » « less
An official website of the United States government

