Introduction:Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods:We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organismDrosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion:Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations nearCG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in theDrosophilaSynthetic Population Resource (DSPR) and theDrosophilaGenetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition toCG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance. 
                        more » 
                        « less   
                    
                            
                            Genetic basis and selection of glyceollin elicitation in wild soybean
                        
                    
    
            Glyceollins, a family of phytoalexins elicited in legume species, play crucial roles in environmental stress response (e.g., defending against pathogens) and human health. However, little is known about the genetic basis of glyceollin elicitation. In the present study, we employed a metabolite-based genome-wide association (mGWA) approach to identify candidate genes involved in glyceollin elicitation in genetically diverse and understudied wild soybeans subjected to soybean cyst nematode. In total, eight SNPs on chromosomes 3, 9, 13, 15, and 20 showed significant associations with glyceollin elicitation. Six genes fell into two gene clusters that encode glycosyltransferases in the phenylpropanoid pathway and were physically close to one of the significant SNPs (ss715603454) on chromosome 9. Additionally, transcription factors (TFs) genes such asMYBandWRKYwere also found as promising candidate genes within close linkage to significant SNPs on chromosome 9. Notably, four significant SNPs on chromosome 9 show epistasis and a strong signal for selection. The findings describe the genetic foundation of glyceollin biosynthesis in wild soybeans; the identified genes are predicted to play a significant role in glyceollin elicitation regulation in wild soybeans. Additionally, how the epistatic interactions and selection influence glyceollin variation in natural populations deserves further investigation to elucidate the molecular mechanism of glyceollin biosynthesis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2318746
- PAR ID:
- 10522654
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Plant Science
- Volume:
- 15
- ISSN:
- 1664-462X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands:Peromyscus maniculatus elususfrom Santa Barbara Island andP. m. santacruzaefrom Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein‐coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein‐coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy,Tlr2,Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28,Eif2ak4, Il12a,Syne1), aggression (Cyp19a,Lama2), and body size (Bc16,Syne1) exhibited non‐synonymous mutations predicted to have moderate to large effects. Variation in olfaction‐related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator‐recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein‐coding genes underlying phenotypes that promote success in those environments.more » « less
- 
            Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations.more » « less
- 
            In this paper, we used a Genotyping-by-Sequencing (GBS) approach to find and genotype more than 4000 genome-wide SNPs (Single Nucleotide Polymorphisms) from striped killifish exposed to a variety of polychlorinated biphenyls (PCBs) and other aromatic pollutants in New Bedford Harbor (NBH, Massachusetts, USA). The aims of this study were to identify the genetic consequences of exposure to aquatic pollutants and detect genes that may be under selection. Low genetic diversity (HE and π) was found in the site exposed to the highest pollution level, but the pattern of genetic diversity did not match the pollution levels. Extensive connectivity was detected among sampling sites, which suggests that balanced gene flow may explain the lack of genetic variation in response to pollution levels. Tests for selection identified 539 candidate outliers, but many of the candidate outliers were not shared among tests. Differences among test results likely reflect different test assumptions and the complex pollutant mixture. Potentially, selectively important loci are associated with 151 SNPs, and enrichment analysis suggests a likely involvement of these genes with pollutants that occur in NBH. This result suggests that selective processes at genes targeted by pollutants may be occurring, even at a small geographical scale, and may allow the local striped killifish to resist the high pollution levels.more » « less
- 
            Abstract Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticatedT. monococcumaccession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    