skip to main content


This content will become publicly available on April 1, 2025

Title: Quasar Winds Caught on Acceleration and Deceleration
Abstract

We present an observational study of wind acceleration based on four low-ionization broad absorption line (BAL) quasars (J0136, J1238, J1259, and J1344). J0136 and J1344 (group 1) are radio-quiet and show large BAL-velocity shifts as opposed to stable line-locking associated absorption lines (AALs). Notably, J1344 displays a linear relation between BAL-velocity shift and time interval over three consecutive epochs, characteristic of compelling evidence for BAL acceleration. J1238 and J1259 (group 2) exhibit small BAL-velocity shifts along with steep-spectrum, weak radio emission at 3.0 and 1.4 GHz. All four quasars have spectral energy distributions (SEDs) with a peak atλrest∼ 10μm, suggesting a link between the BAL acceleration and hot dust emission. The group-2 quasars are redder than group-1 quasars and have a steeper rise at 1μm <λrest< 3μm in their SEDs. All but J1238 exhibit a steep rise followed by a plateau-like time evolution in BAL-velocity shift. Our investigations, combined with previous studies of BAL acceleration, indicate that (1) the coupling process between the BALs and the interstellar medium (ISM) is one of the major avenues for the origin of quasar reddening and patchy obscuration, (2) AAL outflows are ubiquitous and likely signify large-scale remnants of BAL winds coupled to the ISM, and (3) wind deceleration that is closely linked to the BAL–ISM coupling process may produce weak radio emission in otherwise radio-quiet quasars.

 
more » « less
Award ID(s):
2106990
PAR ID:
10522736
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal Supplement Series
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Lyα+ Nvλ1240 and/or Civλ1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz< 0.5 and 1.5 <z< 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ-based black hole mass (MBH) estimates of these quasars using the strength of the optical Feiiemission. We confirm previous findings that WLQs’MBHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisMBHcorrection, we find a significant correlation between Hβ-based Eddington luminosity ratios and a combination of the rest-frame Civequivalent width and Civblueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civparameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties.

     
    more » « less
  2. Abstract

    We present the rest-frame ultraviolet−optical spectral properties of 65 broad absorption line (BAL) quasars from the Gemini Near Infrared Spectrograph−Distant Quasar Survey (GNIRS-DQS). These properties are compared with those of 195 non-BAL quasars from GNIRS-DQS in order to identify the drivers for the appearance of BALs in quasar spectra. In particular, we compare equivalent widths and velocity widths, as well as velocity offsets from systemic redshifts, of principal emission lines. In spite of the differences between their rest-frame ultraviolet spectra, we find that luminous BAL quasars are generally indistinguishable from their non-BAL counterparts in the rest-frame optical band at redshifts 1.55 ≲z≲ 3.50. We do not find any correlation between BAL trough properties and the Hβ-based supermassive black hole masses and normalized accretion rates in our sample. Considering the Sloan Digital Sky Survey quasar sample, which includes the GNIRS-DQS sample, we find that a monochromatic luminosity at rest-frame 2500 Å of ≳1045erg s−1is a necessary condition for launching BAL outflows in quasars. We compare our findings with other BAL quasar samples and discuss the roles that accretion rate and orientation play in the appearance of BAL troughs in quasar spectra.

     
    more » « less
  3. ABSTRACT

    A substantial fraction of quasars display broad absorption lines (BALs) in their rest-frame ultraviolet spectra. While the origin of BALs is thought to be related to the accretion disc wind, it remains unclear whether the observed ratio of BAL to non-BAL quasars is a result of orientation. We conducted observations of 48 BAL quasars and the same number of non-BAL quasars at 322 MHz using the Giant Metrewave Radio Telescope. Combined with previous flux measurements ranging from MHz to GHz frequencies, we compared continuum radio spectra between the two quasar groups. These data offer insights into low-frequency radio properties that have been difficult to investigate with previous observations only at GHz frequencies. Our results show that 73 ± 13 per cent of the BAL quasars exhibit steep or peaked spectra, a higher proportion than the 44 ± 14 per cent observed in the non-BAL quasars. In contrast, there are no discernible differences between the two quasar groups in the radio luminosity, peak frequency, and spectral index distributions of sources with steep or peaked spectra and sources with flat or inverted spectra. Generally, as the jet axis and line of sight become closer to parallel, quasars exhibit flat or inverted spectra rather than steep or peaked spectra. Therefore, these results suggest that BAL quasars are more frequently observed farther from the jet axis than non-BAL quasars. However, given that a certain proportion of BAL quasars exhibit flat or inverted spectra, more than the simple orientation scenario is required to elucidate the radio properties of BAL quasars.

     
    more » « less
  4. Abstract

    We present the results of an investigation of a highly variable Civbroad absorption line (BAL) feature in spectra of the quasar SBS 1408+544 (z= 2.337) that shows a significant shift in velocity over time. This source was observed as a part of the Sloan Digital Sky Survey (SDSS) Reverberation Mapping project and the SDSS-V Black Hole Mapper Reverberation Mapping project, and has been included in two previous studies, both of which identified significant variability in a high-velocity CivBAL on timescales of just a few days in the quasar rest frame. Using ∼130 spectra acquired over 8 yr of spectroscopic monitoring with SDSS, we have determined that this BAL is not only varying in strength, but is also systematically shifting to higher velocities. Using cross-correlation methods, we measure the velocity shifts (and corresponding acceleration) of the BAL over a wide range of timescales, measuring an overall velocity shift ofΔv=68384+89km s−1over the 8 yr monitoring period. This corresponds to an average rest-frame acceleration ofa= 1.040.13+0.14cm s−2, though the magnitude of the acceleration on shorter timescales is not constant throughout. We place our measurements in the context of BAL-acceleration models and examine various possible causes of the observed velocity shift.

     
    more » « less
  5. Abstract

    We present continued analysis of a sample of low-redshift iron low-ionization broad-absorption-line quasars (FeLoBALQs). Choi et al. presentedSimBALspectral analysis of broad-absorption-line (BAL) outflows in 50 objects. Leighly et al. analyzed the optical emission lines of 30 of those 50 objects and found that they are characterized by either a high accretion rate (LBol/LEdd> 0.3) or low accretion rate (0.03 <LBol/LEdd< 0.3). We report that the outflow velocity is inversely correlated with the BAL location among the high-accretion-rate objects, with the highest velocities observed in parsec-scale outflows. In contrast, the low-Eddington-ratio objects showed the opposite trend. We confirmed the known relationship between the outflow velocity andLBol/LEddand found that the scatter plausibly originates in the force multiplier (launch radius) in the low(high)-accretion-rate objects. A log volume filling factor between −6 and −4 was found in most outflows but was as high as −1 for low-velocity compact outflows. We investigated the relationship between the observed [Oiii] emission and that predicted from the BAL gas. We found that these could be reconciled if the emission-line covering fraction depends on the Seyfert type and BAL location. The difference between the predicted and observed [Oiii] luminosity is correlated with the outflow velocity, suggesting that [Oiii] emission in high-Eddington-ratio objects may be broad and hidden under Feiiemission. We suggest that the physical differences in the outflow properties as a function of location in the quasar and accretion rate point to different formation, acceleration, and confinement mechanisms for the two FeLoBALQ types.

     
    more » « less