Nylon‐6 is selectively depolymerized to the parent monomer ϵ‐caprolactam by the readily accessible and commercially available lanthanide trisamido catalysts Ln(N(TMS)2)3(Ln=lanthanide). The depolymerization process is solvent‐free, near quantitative, highly selective, and operates at the lowest Nylon‐6 to ϵ‐caprolactam depolymerization temperature reported to date. The catalytic activity of the different lanthanide trisamides scales with the Ln3+ionic radius, and this process is effective with post‐consumer Nylon‐6 as well as with Nylon‐6+polyethylene, polypropylene or polyethylene terephthalate mixtures. Experimental kinetic data and theoretical (DFT) mechanistic analyses suggest initial deprotonation of a Nylon terminal amido N−H bond, which covalently binds the catalyst to the polymer, followed by a chain‐end back‐biting process in which ϵ‐caprolactam units are sequentially extruded from the chain end.
This content will become publicly available on January 1, 2025
- Award ID(s):
- 2247666
- PAR ID:
- 10522742
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Chem
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2451-9294
- Page Range / eLocation ID:
- 172 to 189
- Subject(s) / Keyword(s):
- Nylon-6 catalytic deconstruction recycling caprolactam
- Format(s):
- Medium: X Size: 2MB
- Size(s):
- 2MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Nylon‐6 is selectively depolymerized to the parent monomer ϵ‐caprolactam by the readily accessible and commercially available lanthanide trisamido catalysts Ln(N(TMS)2)3(Ln=lanthanide). The depolymerization process is solvent‐free, near quantitative, highly selective, and operates at the lowest Nylon‐6 to ϵ‐caprolactam depolymerization temperature reported to date. The catalytic activity of the different lanthanide trisamides scales with the Ln3+ionic radius, and this process is effective with post‐consumer Nylon‐6 as well as with Nylon‐6+polyethylene, polypropylene or polyethylene terephthalate mixtures. Experimental kinetic data and theoretical (DFT) mechanistic analyses suggest initial deprotonation of a Nylon terminal amido N−H bond, which covalently binds the catalyst to the polymer, followed by a chain‐end back‐biting process in which ϵ‐caprolactam units are sequentially extruded from the chain end.
-
Abstract Geminal (
gem −) disubstitution in heterocyclic monomers is an effective strategy to enhance polymer chemical recyclability by lowering their ceiling temperatures. However, the effects of specific substitution patterns on the monomer's reactivity and the resulting polymer's properties are largely unexplored. Here we show that, by systematically installinggem ‐dimethyl groups onto ϵ‐caprolactam (monomer of nylon 6) from the α to ϵ positions, both the redesigned lactam monomer's reactivity and the resultinggem ‐nylon 6’s properties are highly sensitive to the substitution position, with the monomers ranging from non‐polymerizable to polymerizable and thegem ‐nylon properties ranging from inferior to far superior to the parent nylon 6. Remarkably, the nylon 6 with thegem ‐dimethyls substituted at the γ position is amorphous and optically transparent, with a higherT g(by 30 °C), yield stress (by 1.5 MPa), ductility (by 3×), and lower depolymerization temperature (by 60 °C) than conventional nylon 6. -
Abstract Phosphine‐ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low‐coordinate mono(phosphine)‐Rh catalyst on a metal‐organic layer (MOL), P‐MOL • Rh, and its applications in the hydrogenation of mono‐, di‐, and tri‐substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site‐isolated mono(phosphine)‐Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P‐MOL • Rh in catalytic hydrogenation reactions.
-
Abstract Phosphine‐ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low‐coordinate mono(phosphine)‐Rh catalyst on a metal‐organic layer (MOL), P‐MOL • Rh, and its applications in the hydrogenation of mono‐, di‐, and tri‐substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site‐isolated mono(phosphine)‐Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P‐MOL • Rh in catalytic hydrogenation reactions.