skip to main content


This content will become publicly available on June 12, 2025

Title: Stackelberg Differential Game Analysis of Energy Efficiency for Satellite Communication Subsystems
The multiple-user terminals in a satellite transponder’s communication channel compete for limited radio resources to meet their own data rate needs. Because inter-user interference limits on the satellite transponder’s performance, the transponder’s power-control system needs to coordinate all its users to reduce interference and maximizes overall performance of this channel. This paper studies Stackelberg competition among the asymmetrical users in a transponder’s channel, where some users called leader have priority to choose their power control strategy, but other users called followers have to optimize their power control strategy with given leader’s controls. A Stackelberg Differential Game (SDG) is set up to model the Stackelberg competition in a transponder’s communication channel. Each user’s utility function is a trade-off between transmission data rate and power consumption. The dynamics of the system is the changing of channel gain. The optimality condition of Stackelberg equilibrium of leaders and followers is a set of Differential Algebraic Equations (DAE) with an imbedded control strategies from its counterpart. In order to solve for Stackelberg equilibrium, an algorithm based on optimizing leaders’ and followers’ Hamiltonians iteratively is developed. The numerical solution of the SDG model provides the transponder’s power control system with each user’s power-control strategy at the Stackelberg equilibrium.  more » « less
Award ID(s):
1900984
NSF-PAR ID:
10522831
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
INTERNATIONAL ASET INC.
Date Published:
ISSN:
2368-5433
Format(s):
Medium: X
Location:
University of Toronto, Toronto, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies a satellite transponder’s communication channel, in which there exist multiple-user terminals, who compete for limited radio resources to meet their own data rate needs. Because inter-user interference limits on the satellite transponder’s performance, the transponder’s power-control system needs to coordinate all its users to reduce interference and maximizes overall performance. A non-cooperative Differential Game (DG) is set up to model the users’ competition in a transponder’s communication channel. Each user’s utility function is a trade-off between transmission data rate and power consumption. Nash Equilibrium (NE) is defined to be the solution of the DG model. The optimality condition of NE is derived to be a set of Differential Algebraic Equations (DAE). An algorithm based on minimizing Hamiltonians is developed to solve the DAE system. The numerical solution of the DG model provides the transponder’s power control system with each user’s power-control strategy at the equilibrium. 
    more » « less
  2. A satellite transponder’s communication channel is studied in this paper. The multiple terminal users in this channel compete for limited radio resources to satisfy their own data rate needs. Because inter-user interference limits the transponder’s performance, it is beneficial for the transponder’s power-control system to coordinate all users in its channel to reduce interference and to improve performance. By the special properties of channel gain in this type of channel, a non-cooperative Differential Game (DG) is set up to study the competition in a transponder’s channel. Each user’s utility is a trade-off between transmission data rate and power consumption. Nash Equilibrium (NE) is defined to be the solution of the DG model. The optimality condition of NE is derived to be a system of Differential Algebraic Equations (DAE). An algorithm based on minimizing all users’ Hamiltonian is developed to solve the DAE system. The numerical solution of the NE provides the transponder’s power control system with each user’s power-control strategy at the equilibrium. 
    more » « less
  3. In UAV communication with a ground control station, mission success requires maintaining the freshness of the received information, especially when the communication faces hostile interference. We model this problem as a game between a UAV transmitter and an adversarial interferer. We prove that in contrast with the Nash equilibrium, multiple Stackelberg equilibria could arise. This allows us to show that reducing interference activity in the Stackelberg game is achieved by higher sensitivity of the transmitter in the Stackelberg equilibrium strategy to network parameters relative to the Nash equilibrium strategy. All the strategies are derived in closed form and we establish the condition for when multiple strategies arise. 
    more » « less
  4. null (Ed.)
    Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles (UAVs) to provide a resilient communication paradigm during catastrophic events. In this context, we propose a distributed user-centric risk-aware resource management framework in UAV-assisted PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore establish better communication channel conditions to the users, compared to the static UAV. However, the potential over-exploitation of the mobile UAV-based communication by the users may lead to the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior regarding its transmission power investment to the static and/or mobile UAV-based communication option. A non-cooperative game among the users is formulated, where each user determines its power investment strategy to the two available communication choices in order to maximize its expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE) is proven and the convergence of the users’ strategies to it is shown. An iterative distributed and low-complexity algorithm is introduced to determine the PNE. The performance of the proposed user-centric risk-aware resource management framework in terms of users’ achievable data rate and spectrum utilization, is achieved via modeling and simulation. Furthermore, its superiority and benefits are demonstrated, by comparing its performance against other existing approaches with regards to UAV selection and spectrum utilization. 
    more » « less
  5. In this paper, a distributed swarm control problem is studied for large-scale multi-agent systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges to control design due to its large number of agents. It might be more difficult for developing the appropriate control to achieve complicated missions such as collective swarming. To address these challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then, a cooperative game is used to formulate the distributed swarm control for multi-group leaders, and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively. Using the interaction between leaders and followers, the mean field game is used to continue the collective swarm behavior from leaders to followers smoothly without raising the computational complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to learn the intelligent optimal distributed swarm control for multi-group leader–follower systems. Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate the performance of the developed scheme. 
    more » « less