skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arabidopsis and maize terminator strength is determined by GC content, polyadenylation motifs and cleavage probability
Abstract The 3’ end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plantsArabidopsis thalianaandZea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.  more » « less
Award ID(s):
2240888 1748843
PAR ID:
10523033
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionGene expression is often controlled via cis-regulatory elements (CREs) that modulate the production of transcripts. For multi-gene genetic engineering and synthetic biology, precise control of transcription is crucial, both to insulate the transgenes from unwanted native regulation and to prevent readthrough or cross-regulation of transgenes within a multi-gene cassette. To prevent this activity, insulator-like elements, more properly referred to as transcriptional blockers, could be inserted to separate the transgenes so that they are independently regulated. However, only a few validated insulator-like elements are available for plants, and they tend to be larger than ideal. MethodsTo identify additional potential insulator-like sequences, we conducted a genome-wide analysis ofUtricularia gibba(humped bladderwort), one of the smallest known plant genomes, with genes that are naturally close together. The 10 best insulator-like candidates were evaluated in vivo for insulator-like activity. ResultsWe identified a total of 4,656 intergenic regions with expression profiles suggesting insulator-like activity. Comparisons of these regions across 45 other plant species (representing Monocots, Asterids, and Rosids) show low levels of syntenic conservation of these regions. Genome-wide analysis of unmethylated regions (UMRs) indicates ~87% of the targeted regions are unmethylated; however, interpretation of this is complicated becauseU. gibbahas remarkably low levels of methylation across the genome, so that large UMRs frequently extend over multiple genes and intergenic spaces. We also could not identify any conserved motifs among our selected intergenic regions or shared with existing insulator-like elements for plants. Despite this lack of conservation, however, testing of 10 selected intergenic regions for insulator-like activity found two elements on par with a previously published element (EXOB) while being significantly smaller. DiscussionGiven the small number of insulator-like elements currently available for plants, our results make a significant addition to available tools. The high hit rate (2 out of 10) also implies that more useful sequences are likely present in our selected intergenic regions; additional validation work will be required to identify which will be most useful for plant genetic engineering. 
    more » « less
  2. IntroductionPlants employ the Calvin-Benson cycle (CBC) to fix atmospheric CO2for the production of biomass. The flux of carbon through the CBC is limited by the activity and selectivity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). Alternative CO2fixation pathways that do not use RuBisCO to fix CO2have evolved in some anaerobic, autotrophic microorganisms. MethodsRather than modifying existing routes of carbon metabolism in plants, we have developed a synthetic carbon fixation cycle that does not exist in nature but is inspired by metabolisms of bacterial autotrophs. In this work, we build and characterize a condensed, reverse tricarboxylic acid (crTCA) cyclein vitroandin planta. ResultsWe demonstrate that a simple, synthetic cycle can be used to fix carbon in vitro under aerobic and mesophilic conditions and that these enzymes retain activity whenexpressed transientlyin planta. We then evaluate stable transgenic lines ofCamelina sativathat have both phenotypic and physiologic changes. TransgenicC. sativaare shorter than controls with increased rates of photosynthetic CO2assimilation and changes in photorespiratory metabolism. DiscussionThis first iteration of a build-test-learn phase of the crTCA cycle provides promising evidence that this pathway can be used to increase photosynthetic capacity in plants. 
    more » « less
  3. Summary To understand factors that influence the assembly of microbial communities, we inoculatedMedicago sativawith a series of nested bacterial synthetic communities and grew plants in distinct nitrogen concentrations. Two isolates in our eight‐member synthetic community,Williamsiasp. R60 andPantoeasp. R4, consistently dominate community structure across nitrogen regimes. WhilePantoeasp. R4 consistently colonizes plants to a higher degree compared to the other six organisms across each community and each nutrient level,Williamsiasp. R60 exhibits nutrient specific colonization differences.Williamsiasp. R60 is more abundant in plants grown at higher nitrogen concentrations, but exhibits the opposite trend when no plant is present, indicating plant‐driven influence over colonization. Our research discovered unique, repeatable colonization phenotypes for individual microbes during plant microbiome assembly, and identified alterations caused by the host plant, microbes, and available nutrients. 
    more » « less
  4. Abstract BackgroundCas12a (formerly known as Cpf1), the class II type V CRISPR nuclease, has been widely used for genome editing in mammalian cells and plants due to its distinct characteristics from Cas9. Despite being one of the most robust Cas12a nucleases, LbCas12a in general is less efficient than SpCas9 for genome editing in human cells, animals, and plants. ResultsTo improve the editing efficiency of LbCas12a, we conduct saturation mutagenesis inE. coliand identify 1977 positive point mutations of LbCas12a. We selectively assess the editing efficiency of 56 LbCas12a variants in human cells, identifying an optimal LbCas12a variant (RVQ: G146R/R182V/E795Q) with the most robust editing activity. We further test LbCas12a-RV, LbCas12a-RRV, and LbCas12a-RVQ in plants and find LbCas12a-RV has robust editing activity in rice and tomato protoplasts. Interestingly, LbCas12a-RRV, resulting from the stacking of RV and D156R, displays improved editing efficiency in stably transformed rice and poplar plants, leading to up to 100% editing efficiency inT0plants of both plant species. Moreover, this high-efficiency editing occurs even at the non-canonical TTV PAM sites. ConclusionsOur results demonstrate that LbCas12a-RVQ is a powerful tool for genome editing in human cells while LbCas12a-RRV confers robust genome editing in plants. Our study reveals the tremendous potential of these LbCas12a variants for advancing precision genome editing applications across a wide range of organisms. 
    more » « less
  5. Abstract It is challenging to identify the smallest microexons (≤15-nt) due to their small size. Consequently, these microexons are often misannotated or missed entirely during genome annotation. Here, we develop a pipeline to accurately identify 2,398 small microexons in 10 diverse plant species using 990 RNA-seq datasets, and most of them have not been annotated in the reference genomes. Analysis reveals that microexons tend to have increased detained flanking introns that require post-transcriptional splicing after polyadenylation. Examination of 45 conserved microexon clusters demonstrates that microexons and associated gene structures can be traced back to the origin of land plants. Based on these clusters, we develop an algorithm to genome-wide model coding microexons in 132 plants and find that microexons provide a strong phylogenetic signal for plant organismal relationships. Microexon modeling reveals diverse evolutionary trajectories, involving microexon gain and loss and alternative splicing. Our work provides a comprehensive view of microexons in plants. 
    more » « less