skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinguishing Impacts on Winter Temperatures in Northern Mid–High-Latitude Continents during Multiyear and Single-Year La Niña Events: A Modeling Study
Abstract Utilizing a 2200-yr CESM1 preindustrial simulation, this study examines the influence of property distinctions between single-year (SY) and multiyear (MY) La Niñas on their respective impacts on winter surface air temperatures across mid–high-latitude continents in the model, focusing on specific teleconnection mechanisms. Distinct impacts were identified in four continent sectors: North America, Europe, Western Siberia (W-Siberia), and Eastern Siberia (E-Siberia). The typical impacts of simulated SY La Niña events are featured with anomalous warming over Europe and W&E-Siberia and anomalous cooling over North America. Simulated MY La Niña events reduce the typical anomalous cooling over North America and the typical anomalous warming over W&E-Siberia but intensify the typical anomalous warming over Europe. The distinct impacts of simulated MY La Niñas are more prominent during their first winter than during the second winter, except over W-Siberia, where the distinct impact is more pronounced during the second winter. These overall distinct impacts in the CESM1 simulation can be attributed to the varying sensitivities of these continent sectors to the differences between MY and SY La Niñas in their intensity, location, and induced sea surface temperature anomalies in the Atlantic Ocean. These property differences were linked to the distinct climate impacts through the Pacific North America, North Atlantic Oscillation, Indian Ocean–induced wave train, and tropical North Atlantic–induced wave train mechanisms. The modeling results are then validated against observations from 1900 to 2022 to identify disparities in the CESM1 simulation.  more » « less
Award ID(s):
2109539
PAR ID:
10523057
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
15
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 3943-3958
Size(s):
p. 3943-3958
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines December-January-February (DJF) soil moisture responses to multi-year (MY) and single-year (SY) La Niñas using a 2200-year CESM1 simulation, AGCM experiments, and observational data. Four regions where MY La Niñas amplify SY La Niñas’ impacts on soil moisture were identified: North America, Australia, the Middle East, and the Sahel. SY La Niñas typically cause soil moisture drying in the Middle East and North America and wetting in Australia and the Sahel. MY La Niñas enhance these effects in the second DJF due to the strengthening of precipitation anomalies or the accumulation of precipitation-induced soil moisture anomalies, except in the Sahel where wetting is driven in part by evapotranspiration anomalies. Soil moisture variations are linked to La Niña-induced sea surface temperature changes in the Indian Ocean (for Australia and the Middle East) and the Pacific Ocean (for North America). These amplified effects are largely supported by the observed MY La Niña events from 1948 to 2022. These findings emphasize the need to integrate MY La Niñas into regional agriculture and water resource management strategies to better anticipate and mitigate their impacts. 
    more » « less
  2. Abstract A 2,200‐year CESM1 pre‐industrial simulation is used to contrast Antarctic sea ice concentration (SIC) variations between the first and second austral winters of multi‐year La Niñas. The typical SIC anomaly pattern induced by single‐year La Niñas appears only during the second austral winter of multi‐year La Niñas. A similar pattern, but zonally shifted compared to the typical one, is found during the first winter and exhibits a tripolar pattern with anomaly centers over the Ross, Amundsen‐Bellingshausen, and Weddell Seas. The shift is a result of the pre‐onset conditions associated with multi‐year La Niñas that excites unique atmospheric circulation modes during the first winter. The distinct zonally‐shifted SIC anomaly pattern is observed in four of the six multi‐year La Niña events during the period 1979–2020. These results suggest that it is helpful to separate La Niñas into single and multi‐year events to better understand the La Niña impacts on Antarctic climate. 
    more » « less
  3. Abstract This study explores the Antarctic sea ice concentration (SIC) response to multiyear (MY) and single-year (SY) El Niños using a 2200-yr CESM1 preindustrial simulation. During the first austral winter, MY El Niño weakens the amplitude of the typical SIC anomaly pattern induced by SY El Niño but maintains the same impact pattern. During the second winter, MY El Niños not only intensify the amplitude but also shift the typical impact pattern of SY El Niños eastward. The amplitude variation effect on SIC is caused by an Indian Ocean memory mechanism, while the zonal shifting effect on SIC pattern is caused by an Atlantic Ocean memory mechanism. These mechanisms result from the different responses of the two oceans to different locations and intensities between SY and MY El Niños. Observed MY El Niños during 1979–2020 confirm the distinct impacts during the second austral winter revealed by the CESM1 simulation. These results demonstrate that SIC in the Ross and Amundsen–Bellingshausen–Weddell Seas is sensitive to the SY or MY types of El Niño. 
    more » « less
  4. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomaly appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis. 
    more » « less
  5. null (Ed.)
    Abstract During the summer when an El Niño event is transitioning to a La Niña event, the extratropical teleconnections exert robust warming anomalies over the U.S. Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on atmospheric general circulation model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air–sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into a warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air–sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land–atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America. 
    more » « less