skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Amplified impacts of multi-year La Niñas on soil moisture compared to single-year La Niñas
Abstract This study examines December-January-February (DJF) soil moisture responses to multi-year (MY) and single-year (SY) La Niñas using a 2200-year CESM1 simulation, AGCM experiments, and observational data. Four regions where MY La Niñas amplify SY La Niñas’ impacts on soil moisture were identified: North America, Australia, the Middle East, and the Sahel. SY La Niñas typically cause soil moisture drying in the Middle East and North America and wetting in Australia and the Sahel. MY La Niñas enhance these effects in the second DJF due to the strengthening of precipitation anomalies or the accumulation of precipitation-induced soil moisture anomalies, except in the Sahel where wetting is driven in part by evapotranspiration anomalies. Soil moisture variations are linked to La Niña-induced sea surface temperature changes in the Indian Ocean (for Australia and the Middle East) and the Pacific Ocean (for North America). These amplified effects are largely supported by the observed MY La Niña events from 1948 to 2022. These findings emphasize the need to integrate MY La Niñas into regional agriculture and water resource management strategies to better anticipate and mitigate their impacts.  more » « less
Award ID(s):
2109539
PAR ID:
10644549
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
8
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Utilizing a 2200-yr CESM1 preindustrial simulation, this study examines the influence of property distinctions between single-year (SY) and multiyear (MY) La Niñas on their respective impacts on winter surface air temperatures across mid–high-latitude continents in the model, focusing on specific teleconnection mechanisms. Distinct impacts were identified in four continent sectors: North America, Europe, Western Siberia (W-Siberia), and Eastern Siberia (E-Siberia). The typical impacts of simulated SY La Niña events are featured with anomalous warming over Europe and W&E-Siberia and anomalous cooling over North America. Simulated MY La Niña events reduce the typical anomalous cooling over North America and the typical anomalous warming over W&E-Siberia but intensify the typical anomalous warming over Europe. The distinct impacts of simulated MY La Niñas are more prominent during their first winter than during the second winter, except over W-Siberia, where the distinct impact is more pronounced during the second winter. These overall distinct impacts in the CESM1 simulation can be attributed to the varying sensitivities of these continent sectors to the differences between MY and SY La Niñas in their intensity, location, and induced sea surface temperature anomalies in the Atlantic Ocean. These property differences were linked to the distinct climate impacts through the Pacific North America, North Atlantic Oscillation, Indian Ocean–induced wave train, and tropical North Atlantic–induced wave train mechanisms. The modeling results are then validated against observations from 1900 to 2022 to identify disparities in the CESM1 simulation. 
    more » « less
  2. Abstract A 2,200‐year CESM1 pre‐industrial simulation is used to contrast Antarctic sea ice concentration (SIC) variations between the first and second austral winters of multi‐year La Niñas. The typical SIC anomaly pattern induced by single‐year La Niñas appears only during the second austral winter of multi‐year La Niñas. A similar pattern, but zonally shifted compared to the typical one, is found during the first winter and exhibits a tripolar pattern with anomaly centers over the Ross, Amundsen‐Bellingshausen, and Weddell Seas. The shift is a result of the pre‐onset conditions associated with multi‐year La Niñas that excites unique atmospheric circulation modes during the first winter. The distinct zonally‐shifted SIC anomaly pattern is observed in four of the six multi‐year La Niña events during the period 1979–2020. These results suggest that it is helpful to separate La Niñas into single and multi‐year events to better understand the La Niña impacts on Antarctic climate. 
    more » « less
  3. The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to crop yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. 
    more » « less
  4. null (Ed.)
    Abstract This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle. 
    more » « less
  5. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less