Chemical upcycling of plastic waste into high-value materials has the potential to contribute to a more sustainable plastic economy. We report the synthesis of high-value ionomers directly from commodity polyolefins enabled by amidyl radical mediated C−H functionalization. The use of thiosulfonates as a linchpin functionality for the group transfer of a variety of heteroaryl groups provided tunable incorporation of ionizable functionality onto a variety of polyolefin substrates, including postconsumer polyethylene packaging waste. Synthetic, structural, and thermomechanical studies provided a comprehensive understanding of both structure−reactivity and structure−property relationships for polyolefin ionomers. X-ray scattering experiments conducted in the solid and melt states confirm the presence of ionic multiplets that serve as physical cross-links both below and above the melting temperature of polyolefin crystallites. The incorporation of ionic groups into the polyolefins yielded materials with significantly enhanced melt strength and tensile toughness. We anticipate that this approach to access performance-advantaged polyolefin ionomers from commodity substrates or plastic waste will enhance sustainability efforts and lead to new opportunities for this versatile class of thermoplastics.
more »
« less
C–H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets
Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C−H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.
more »
« less
- PAR ID:
- 10523120
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 145
- Issue:
- 50
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 27450 to 27458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Developing effective recycling pathways for polyolefin waste, enabling a move to a circular economy, is an imperative that must be met. Post-use modification has shown promising results in upcycling polyolefins, removing the limitation of inertness, and improving the final physical properties of the recycled material while extending its useful lifetime. Grafting of maleic anhydride groups to polypropylene is an established industrial process that enhances its reactivity and provides a convenient route to further functionalization and upcycling. In this work, maleic anhydride grafted polypropylene (PPgMAH) was hydroxylated, and subsequently cured with a diisocyanate to form a thermoset polyurethane (PU). The crystal structure (unit cell and lamellar structure) of the polypropylene (PP) was preserved in the PU. At room temperature, the PU showed high modulus due to the crystallization behavior of the PP; upon increasing the temperature above the melting temperature, the modulus decreased to a rubbery plateau, consistent with formation of a network. The resulting PU showed higher glass transition temperature and lower degree of crystallinity than its PP predecessor due to the crosslinked nature of the polymer. The mechanical integrity of the PU was maintained through several reprocessing cycles due to the melt processability enabled by the presence of a urethane exchange catalyst. This functionalization and upcycling route thus offers a promising alternative to repurposing PP waste, in which the creation of melt-processable thermoset polymers expands applications for the materials.more » « less
-
Plastic upcycling, which involves making plastic-derived products with unique or improved properties from discarded plastic materials, is a promising alternative to recycling and disposal to help reduce the overall production of waste. However, recycled and reused materials typically have inferior mechanical, thermal, optical, and barrier properties compared with virgin plastics. Upcycled plastic materials could improve these properties while addressing future waste accumulation. In this study, we use waste poly(ethylene terephthalate) (PET) collected from disposable food packaging to create a repurposed plastic graphene oxide (GO) composite with a goal of upcycling. We developed a one-pot “dynamic depolymerization” to break down PET in the presence of GO and successfully enabled transesterification of the polymer onto GO. Covalent attachment of PET onto GO and tailorable plastic content was confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. These covalent composites (PET-GO) were found to be relatively impermeable to water vapor, showing promise for applications in packaging materials. Aqueous degradation experiments on the composite materials demonstrated that, in bulk conditions, PET-GOs remain mechanically robust while in contact with water over appropriate time scales for packaging applications, while beginning to break down in accelerated conditions. The use of depolymerization methods to promote polymer grafting concurrently with polymer deconstruction could provide a more general method for grafting waste polymers onto oxidized carbonaceous substrates with further study.more » « less
-
The current insufficient recycling of commodity polymer waste has resulted in pressing environmental and human health issues in our modern society. In the quest for next-generation polymer materials, chemists have recently shifted their attention to the design of chemically recyclable polymers that can undergo depolymerization to regenerate monomers under mild conditions. During the past decade, ring-closing metathesis reactions have been demonstrated to be a robust approach for the depolymerization of polyolefins, producing low-strain cyclic alkene products which can be repolymerized back to new batches of polymers. In this review, we aim to highlight the recent advances in chemical recycling of polyolefins enabled by ring-closing metathesis depolymerization (RCMD). A library of depolymerizable polyolefins will be covered based on the ring size of their monomers or depolymerization products, including five-membered, six-membered, eight-membered, and macrocyclic rings. Moreover, current limitations, potential applications, and future opportunities of the RCMD approach will be discussed. It is clear from recent research in this field that RCMD represents a powerful strategy towards closed-loop chemical recycling of novel polyolefin materials.more » « less
-
Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins will be the most effective solution to address the plastic waste crisis, given that polyolefins are the primary contributors to global plastic production. Significant challenges encountered by plastic waste valorization facilities include the uncertainty in the composition of the waste feedstock, process yield, and product price. These variabilities can lead to compromised performance or even render operations infeasible. To address these challenges, this work applied the robust optimization-based framework to design an integrated polyolefin chemical recycling plant. Data-driven surrogate model was built to capture the separation units behavior and reduce the computational complexity of the optimization problem. It was found that when process yield and price uncertainties were considered, wax products became more favorable, and pyrolysis became the preferred reaction technology.more » « less