skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functionalization and Repurposing of Polypropylene to a Thermoset Polyurethane
Developing effective recycling pathways for polyolefin waste, enabling a move to a circular economy, is an imperative that must be met. Post-use modification has shown promising results in upcycling polyolefins, removing the limitation of inertness, and improving the final physical properties of the recycled material while extending its useful lifetime. Grafting of maleic anhydride groups to polypropylene is an established industrial process that enhances its reactivity and provides a convenient route to further functionalization and upcycling. In this work, maleic anhydride grafted polypropylene (PPgMAH) was hydroxylated, and subsequently cured with a diisocyanate to form a thermoset polyurethane (PU). The crystal structure (unit cell and lamellar structure) of the polypropylene (PP) was preserved in the PU. At room temperature, the PU showed high modulus due to the crystallization behavior of the PP; upon increasing the temperature above the melting temperature, the modulus decreased to a rubbery plateau, consistent with formation of a network. The resulting PU showed higher glass transition temperature and lower degree of crystallinity than its PP predecessor due to the crosslinked nature of the polymer. The mechanical integrity of the PU was maintained through several reprocessing cycles due to the melt processability enabled by the presence of a urethane exchange catalyst. This functionalization and upcycling route thus offers a promising alternative to repurposing PP waste, in which the creation of melt-processable thermoset polymers expands applications for the materials.  more » « less
Award ID(s):
1906009
PAR ID:
10548171
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Journals
Date Published:
Journal Name:
ACS Macro Letters
ISSN:
2161-1653
Page Range / eLocation ID:
1442 to 1448
Subject(s) / Keyword(s):
Polyolefin recycling and upcycling, network formation, crystallinity, urethane exchange, processable thermoset
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyvinyl chloride (PVC) containing municipal solid waste (MSW) streams are difficult to recycle and mostly landfilled due to various detrimental effects PVC causes to waste recycling. In this work, a single-step upcycling of PVC-containing commingled wastes in tetrahydrofuran was investigated using cellulose, PVC, polyethylene (PE), polypropylene (PP), and polystyrene (PS) to model the wastes. During the co-conversion, in-situ produced HCl derived from PVC decomposition acted as an acid catalyst to selectively decompose cellulose into liquid mainly containing levoglucosan (LGA) and furfural. It was also found that the presence of PE, PP, and PS in the mixture synergistically enhanced the cellulose-derived monomer productions and increased the reaction rate for producing the monomers by suppressing secondary reactions of HCl in the solvent. The maximum LGA yield from co-conversion of cellulose, PVC, and PS was 35.4% after a 5 min reaction compared to the 31.7% obtained without PS in the mixture. In addition to converting cellulose to chemicals, PVC-derived polyaromatics and partly decomposed PE, PP, and PS were recovered as solids. The dechlorinated solids had higher heating values up to 46.11 MJ/kg, achieved by co-converting cellulose, PVC, and PP. When used as oil absorbents in water, the solid recovered from converting cellulose, PVC, and PE mixture showed the highest absorption capability. Overall, the presented approach offers a promising way for upcycling PVC-containing wastes in which PVC properties and its molecular structure are leveraged to enhance the conversion. 
    more » « less
  2. While tremendous progress has been made in the dynamic crosslinking of polypropylene (PP) for plastics upcycling, their efficacy in addressing low molecular weight (MW) PP waste remains untapped. In this work, we demonstrate a simple and scalable method to convert brittle low MW PP to vitrimer materials with enhanced thermal and mechanical properties, enabling their use in circular upcycling. Different from most previous work employing small molecule crosslinkers, we prepare PP vitrimers (PPv) using polymeric crosslinkers, containing polyethylene glycol segments (PEG), which lead to altered crystalline structures and network formation. Importantly, by increasing the MW of crosslinkers from 200 Da to 1000 Da, the PPv exhibit more than 50 times increase in their fracture energy with strong ductility, which can be attributed to combined effects of strengthened amorphous regions of semi-crystalline PP domains and the phase separation between soft PEG segments and PP matrix. Moreover, when blending the PPv with high MW PP (PPh), the PPh/PPv blends show comparable elastic modulus, yield strength, and stretchability to the PPh, in sharp contrast to the widely-known embrittlement of low MW PP/PPh blends. These results demonstrate the use of polymeric dynamic crosslinkers as an important strategy for upcycling low MW PP waste to value-added products. 
    more » « less
  3. Santagata, Antonio (Ed.)
    In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content. The elastomer and specific mass percentages were chosen based on prior successes involving acrylonitrile butadiene styrene (ABS), in which the maleic anhydride graft enabled compatibility between different materials. The rheological properties of PET and the PET/SEBS blends were characterized by the melt flow index and dynamic mechanical analysis. The addition of SEBS-g-MA did not have a significant impact on mechanical properties, as determined by tensile and impact testing, where all test specimens were manufactured by FFF. Delamination of the tensile specimens convoluted the ability to discern differences in the mechanical properties, particularly % elongation. Annealing of the specimens enabled the observation of the effect of elastomer content on the mechanical properties, particularly in the case of impact testing, where the impact strength increased with the increase in SEBS content. However, annealing led to shrinkage of the specimens, detracting from the realized benefits of the thermal process. Scanning electron microscopy of spent tensile specimens revealed that, in the non-annealed condition, SEBS formed nodules that would detach from the PET matrix during the tensile test, indicating that a robust bond was not present. The addition of SEBS-g-MA did allow for shape memory property characterization, where deformation of tensile specimens occurred at room temperature. Specimens from the 20% by mass elastomer content sample group exhibited a shape fixation ratio on the order of 99% and a shape recovery ratio on the order of 80%. This work demonstrates a potential waste reduction strategy to tackle the problem of polymer waste by upcycling discarded plastic into a feedstock material for additive manufacturing with shape memory properties. 
    more » « less
  4. Abstract We report synthesis of a radical scavenging aminated thermoplastic polymer through reactive extrusion of polyethyleneimine (PEI) with a polypropylene and polypropylene‐graft‐maleic anhydride (PP‐g‐MA) meltblend. The reaction was confirmed using acid orange 7 (AO7) amine density assay, toluidine blue O (TBO) carboxylic acid density assay, Fourier transform infrared spectroscopy (FTIR), and a migration assay. FTIR spectra revealed a reduction of the asymmetric stretching of the maleic anhydride (MA) carbonyl group at 1777 cm−1and the emergence of the maleimide carbonyl peak at 1702 cm−1. AO7 supported surface orientation of grafted amine groups by introduction of 7.22 nmol cm−2primary amines, corresponding to the reduction of surface carboxylic acids quantified by TBO from 12.46 nmol cm−2to 0.43 nmol cm−2. After incubation (40°C, 10 days) in ethanol, acetic acid, and water, < 0.1 mg cm−2PEI migrated from the materials, supporting the covalent nature of the grafting. Antioxidant activity was demonstrated exhibiting 5.90 and 4.31 nmol Troloxeqcm−2in aqueous and organic environments, respectively. Results indicate a successful condensation reaction during reactive extrusion, producing an aminated thermoplastic polymer with antioxidant activity for target applications such as food packaging, wastewater treatment, carbon capture, and others. 
    more » « less
  5. ABSTRACT This study explores how a sieving step of waste cellulosic fiber and fine (WCFF) mixture affects the performance of WCFF‐loaded polypropylene (PP) composites and whether the separation of fines from fibers offers an added benefit. The WCFF samples were downsized, and four different filler size ranges were sieved using a series of mesh sizes from 4 to 0.85 mm. The WCFF/PP composites were then compounded at 20 wt.% loading of WCFF using a twin‐screw extruder. Incorporating WCFF increased the tensile strength to 41.28 MPa and the modulus to 3207 MPa, accounting for 28% and 38% enhancements, respectively. Interestingly, the greatest improvements were associated with the nonsieved WCFF case, and the sieved WCFF fibers provided only marginal enhancements over virgin PP. The outperformance of nonsieved WCFF was attributed to the synergistic reinforcement of hybrid fibers and fines as well as the maintenance of longer fibers in the system. However, the strain at break and impact strength of PP decreased after introducing WCFF. Moreover, the complex viscosity and storage modulus increased with an increase in the filler size, due to the formation of a more effective percolative network. The PP's crystallinity exhibited a relatively strong dependency on the sieving, where WCFF samples with short‐aspect‐ratio fillers promoted the crystallinity significantly. It was also found that the WCFF degradation onset temperature increased once it was incorporated into PP. This study suggests that waste cellulosic feedstocks can be utilized as a reinforcement without additional sieving to manufacture high‐performance and cost‐effective composites. 
    more » « less