Brush-like elastomers with crystallizable side chains hold promise for biomedical applications requiring the presence of two distinct mechanical states below and above body temperature: hard and supersoft. The hard semicrystalline state facilitates piercing of the body whereupon the material softens to match the mechanics of surrounding soft tissue. To understand the transition between the two states, the crystallization process was studied with synchrotron X-ray scattering for a series of brush elastomers with poly(ε-caprolactone) side chains bearing from 7 to 13 repeat units. The so-called bottlebrush correlation peak was used to monitor configuration of bottlebrush backbones in the amorphous regions during the crystallization process. In the course of crystallization, the backbones are expelled into the interlamellar amorphous gaps, which is accompanied by their conformational changes and leads to partitioning to unconfined (melt) and confined (semicrystalline) (conformational) states. The crystallization process starts by consumption of the unconfined macromolecules by the growing crystals followed by reconfiguration of macromolecules within the already grown spherulites.
more »
« less
Bottlebrush Elastomers with Crystallizable Side Chains: Monolayer-like Structure of Backbones Segregated in Intercrystalline Regions
Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones.
more »
« less
- PAR ID:
- 10523122
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 296
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration. Under uniaxial stretching, the emergence of a distinct four-spot pattern in the small-angle region indicated the development of long-range order within the material. According to the affine deformation of a cubic lattice, the four-spot pattern’s interference maxima correspond to 110 reflections upon stretching along the [111] axis of the body-centered unit cell. The experimental findings were corroborated by computer simulations of dissipative particle dynamics that confirmed the formation of a bcc domain structure.more » « less
-
Abstract This present study illustrates the synthesis and preparation of polyoxanorbornene‐based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring‐opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li‐ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10−4S cm−1at room temperature and excellent electrochemical performance, including high‐rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium‐metal batteries (LMB).more » « less
-
Since the invention of polymer networks such as cross-linked natural rubber in the 19th century, it has been a dogma that stiffer networks are less stretchable. We report a universal strategy for decoupling the stiffness and extensibility of single-network elastomers. Instead of using linear polymers as network strands, we use foldable bottlebrush polymers, which feature a collapsed backbone grafted with many linear side chains. Upon elongation, the collapsed backbone unfolds to release stored length, enabling remarkable extensibility. By contrast, the network elastic modulus is inversely proportional to network strand mass and is determined by the side chains. We validate this concept by creating single-network elastomers with nearly constant Young’s modulus (30 kilopascals) while increasing tensile breaking strain by 40-fold, from 20 to 800%. We show that this strategy applies to networks of different polymer species and topologies. Our discovery opens an avenue for developing polymeric materials with extraordinary mechanical properties.more » « less
-
Polymers are thermally insulating due to randomly oriented molecular chains, limiting their effectiveness in thermal management. However, when processed into nanofibers, polymers can exhibit significantly higher thermal conductivity, primarily due to enhanced internal structures such as crystallinity and molecular alignment. Characterizing these structural parameters at the single nanofiber level remains a challenge, limiting understanding of thermal transport mechanisms. Here, we investigate the relationship between internal structure and thermal conductivity of single polyethylene oxide (PEO) nanofibers fabricated from near-field electrospinning (NFES). By varying molecular weight and concentration of PEO, their impact on thermal conductivity and internal structure are examined. Crystallinity is examined using conventional Raman spectroscopy, while molecular orientation is assessed through polarized Raman and polarized FTIR spectroscopy. Results reveal that enhanced thermal conductivity in PEO nanofibers is primarily attributed to increased molecular orientation. A maximum thermal conductivity of 2.7 W/m·K is achieved in PEO nanofibers, representing a notable improvement over bulk PEO (0.2 W/m·K). These findings demonstrate the potential of structurally engineered PEO nanofibers for thermal applications including electronic packaging and thermal interface materials. Further, the approach presented in this work can provide a framework for exploring thermal transport mechanisms in other polymer systems.more » « less
An official website of the United States government

