Radar-based recognition of human activities of daily living has been a focus of research for over a decade. Current techniques focus on generalized motion recognition of any person and rely on massive amounts of data to characterize generic human activity. However, human gait is actually a person-specific biometric, correlated with health and agility, which depends on a person’s mobility ethogram. This paper proposes a multi-input multi-task deep learning framework for jointly learning a person’s agility and activity. As a proof of concept, we consider three categories of agility represented by slow, fast and nominal motion articulations and show that joint consideration of agility and activity can lead to improved activity classification accuracy and estimation of agility. To the best of our knowledge, this work represents the first work considering personalized motion recognition and agility characterization using radar.
more »
« less
RF sensing of personalized mobility: accounting for temporal variability in ethogram-based classification
Human activity recognition (HAR) with radar-based technologies has become a popular research area in the past decade. However, the objective of these studies are often to classify human activity for anyone; thus, models are trained using data spanning as broad a swath of people and mobility profiles as possible. In contrast, applications of HAR and gait analysis to remote health monitoring require characterization of the person-specific qualities of a person’s activities and gait, which greatly depends on age, health and agility. In fact, the speed or agility with which a person moves can be an important health indicator. In this study, we propose a multi-input multi-task deep learning framework to simultaneously learn a person’s activity and agility. In this initial study, we consider three different agility states: slow, nominal, and fast. It is shown that joint learning of agility and activity improves the classification accuracy for both activity and agility recognition tasks. To the best of our knowledge, this study is the first work considering both agility characterization and personalized activity recognition using RF sensing.
more »
« less
- PAR ID:
- 10523221
- Editor(s):
- Hedden, Abigail S; Mazzaro, Gregory J
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510674141
- Page Range / eLocation ID:
- 30
- Subject(s) / Keyword(s):
- deep learning radar human activity recognition micro-doppler spectrograms
- Format(s):
- Medium: X
- Location:
- National Harbor, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Driven by the development of machine learning and the development of wireless techniques, lots of research efforts have been spent on the human activity recognition (HAR). Although various deep learning algorithms can achieve high accuracy for recognizing human activities, existing works lack of a theoretical performance upper bound which is the best accuracy that is only limited by the influencing factors in wireless networks such as indoor physical environments and settings of wireless sensing devices regardless of any HAR algorithm. Without the understanding of performance upper bound, mistakenly configuring the influencing factors can reduce the HAR accuracy drastically no matter what deep learning algorithms are utilized. In this paper, we propose the HAR performance upper bound which is the minimum classification error probability that doesn't depend on any HAR algorithms and can be considered as a function of influencing factors in wireless sensing networks for CSI based human activity recognition. Since the performance upper bound can capture the impacts of influencing factors on HAR accuracy, we further analyze the influences of those factors with varying situations such as through the wall HAR and different human activities by MATLAB simulations.more » « less
-
Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)Human activity recognition (HAR) using machine learning has shown tremendous promise in detecting construction workers’ activities. HAR has many applications in human-robot interaction research to enable robots’ understanding of human counterparts’ activities. However, many existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes a transfer learning methodology for activity recognition of construction workers that requires orders of magnitude less data and compute time for comparable or better classification accuracy. The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition in construction. The model was pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400 distinct classes. The model was fine-tuned and tested using videos captured from manual material handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread deployment of collaborative robots in construction.more » « less
-
Human activity recognition (HAR) is the process of using mobile sensor data to determine the physical activities performed by individuals. HAR is the backbone of many mobile healthcare applications, such as passive health monitoring systems, early diagnosing systems, and fall detection systems. Effective HAR models rely on deep learning architectures and big data in order to accurately classify activities. Unfortunately, HAR datasets are expensive to collect, are often mislabeled, and have large class imbalances. State-of-the-art approaches to address these challenges utilize Generative Adversarial Networks (GANs) for generating additional synthetic data along with their labels. Problematically, these HAR GANs only synthesize continuous features — features that are represented by real numbers — recorded from gyroscopes, accelerometers, and other sensors that produce continuous data. This is limiting since mobile sensor data commonly has discrete features that provide additional context such as device location and the time-of-day, which have been shown to substantially improve HAR classification. Hence, we studied Conditional Tabular Generative Adversarial Networks (CTGANs) for data generation to synthesize mobile sensor data containing both continuous and discrete features, a task never been done by state-of-the-art approaches. We show HAR-CTGANs generate data with greater realism resulting in allowing better downstream performance in HAR models, and when state-of-the-art models were modified with HAR-CTGAN characteristics, downstream performance also improves.more » « less
-
Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer data. Using these features, we design a neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption.more » « less
An official website of the United States government

